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» G(A) is the invertible group of A.
» Gi(A) is the connected component of G(A) containing 1.
» o(a) ={A € C: A1 — a is not invertible in A}.

Definition 1 (character)

If A is a Banach algebra then a linear and multiplicative functional
X : A — C is called a character of A.

» If x is a character of A then for each x € A, x(x) € o(x)
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Motivation

Theorem 1 (Gleason-Kahane-Zelazko, 1967-1968)

Let A be a complex Banach algebra. Then a linear functional
¢ : A— C is a character of A if and only if $(x) € o(x) for each
x € A.

Theorem 2 (Kowalski-Stodkowski, 1980)

Let A be a complex Banach algebra. Then a functional ¢ : A — C
is a character of A if and only if

d(x)+ &(y) € o(x+ y) for every x,y € A

So, this beckons the question: Are there multiplicative versions of
these results? That is, if we replace “linear” by “multiplicative” in
Gleason-Kahane-Zelazko and + by x in Kowalski-Stodkowski, are
the results still valid?
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» Consider the following: Let A = C? with the usual pointwise
operations and any algebra norm. Define ¢ : A — C by

sa={3 279

It is easy to see that ¢ is not linear but that it is multiplicative
(and also homogeneous). Moreover, ¢(x) € o(x) for each
x € A

> However, ¢ is clearly not continuous.

> [t seems reasonable to add continuity to the assumptions in
the multiplicative problem.



Further motivation comes from an old result of Carleson (of the
Corona Problem):

Theorem 3 (Carleson, 1957)

Let ¢ be a nonzero continuous multiplicative functional on A, and
let x € A be arbitrary. Then the map

A = log [p(x — A1)

is harmonic on the unbounded connected component of C \ o(x).

So continuous multiplicative functionals do exhibit some good
behaviour...
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Theorem 4 (Maouche, 1996)

Let A be a Banach algebra, and let ¢ : A — C be a multiplicative
function satisfying ¢(x) € o(x) for each x € A. Then,
corresponding to ¢, there exists a unique character on A which
agrees with ¢ on Gy(A).
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Earlier results

Theorem 4 (Maouche, 1996)

Let A be a Banach algebra, and let ¢ : A — C be a multiplicative
function satisfying ¢(x) € o(x) for each x € A. Then,
corresponding to ¢, there exists a unique character on A which
agrees with ¢ on Gy(A).

Theorem 5 (Brits, Schulz, Touré, 2017)

Let A be a Banach algebra, and let ¢ be a multiplicative functional
on A satisfying ¢(x) € o(x) for each x € A. Then the following are
equivalent:

» ¢ is a character of A.

» For each x € A the map A — ¢(A1 — x) is an entire function
on C.

» For each x € A the map X\ — |¢(x — A1) + A| is subharmonic
on C.
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¢ is continuous and ¢(x) € o(x) for each x € A.

Theorem 7 (Brits, Mabrouk, Touré, 2021 )

Let A be any C*-algebra and let ¢ : A — C be a multiplicative
functional. Then ¢ is a character of A if and only if ¢ is
continuous and ¢(x) € o(x) for each x € A.

Theorem 8 (Brits, Schulz, Touré, 2018)

Let A be a Banach algebra such that o(x) is totally disconnected
for each x € A. If a functional ¢ on A is continuous and satisfies
o(x)p(y) € a(xy) for all x,y € A, then either ¢ or —¢ is a
character of A. In particular if A is a scattered Banach algebra
then ¢ or —¢ is a character of A



Spectrally Multiplicative Functionals on C*-Algebras

Throughout this section A is a unital C*-algebra. We denote by S
the collection of all self-adjoint elements of A. We shall consider a
function ¢ : A — C satisfying the following conditions:

(P1) o(x)p(y) € a(xy) for all x,y € A,
(P2) ¢(1) =1,
(P3) ¢ is continuous on A.

and refer to a functional satisfying (P1)-(P2) as a spectrally
multiplicative functional.
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Let x € S. If ¢(x) # 0, then:

(i) o(1 4 ix) = 14 ip(x),

(i) o(tx) = tp(x), for each t € R,

(iii) ¢(e™) = e?(™) = et®(X) | for each t € R,
(iv) @(x™) = ¢(x)", for each n € N.
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() o(1 4 ix) =1+ ig(x),

(i) o(tx) = to(x), for each t € R,

(iii) ¢(e™) = e?(™) = et®(X) | for each t € R,
(iv) ¢(x") = ¢(x)", for each n € N.

Proof (iii)
> By (ii) it suffices to show that ¢(eX) = e?().
» Consider
o(e)p(1 + ix) € o(eX + ixe™).

» Then, using (i),
P(e) + ip(e*)p(x) = €7 + eTvi

for some v € o(x).



Lemma 9
Let x € S. If ¢(x) # 0, then:

(i) ¢(L+ ix) =1+ ip(x),
(i) o(tx) = tp(x), for each t € R,
(iii) ¢(e™) = e?(™) = et®(X) | for each t € R,
(iv) ¢(x") = ¢(x)", for each n € N.
Proof (iii)
> By (ii) it suffices to show that ¢(eX) = e?().

» Consider
d(eX)p(1 + ix) € (e + ixe).

» Then, using (i),

¢(e*) +ip(e*)p(x) = €7 + e7yi

for some v € o(x).

» Consequently ¢(e*) = €” and ¢(x) =~ and so ¢(

ex)

= e?(x),
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Lemma 10
¢ has the following properties:

(i) Ifx €S, then ¢ (") = e () holds for all X € C.
(i) Ifx,x1,...,xn €S, and X € C, then
o (e o) = (M) p(em) o (e™).

(iii) Ifx,y €S, then ¢(x + y) = ¢(x) + ¢(y).

Proof (iii)
» If n € N then, from (i) and (ii), it follows that

é ({ex/ney/n} > — e?(X)+e(y)

» But, by continuity and the Lie-Trotter formula, we have

lim ¢ ([eX/ne)//n] ") _ (Ii,r1n {eX/ney/n} "> = § () = e,

» Since ¢ takes real values on S we have the result.
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Theorem 11 (Brits, Schulz, Touré, 2018)
The formula

¥g(x) := ¢ (Re(x)) + i¢ (Im(x))

defines a character on A, moreover, 1)y agrees with ¢ on Gi(A)US
Proof

| 4

By Lemma 10 (iii), together with Kowalski-Stodkowski, 14
would be a character if we can prove that 14(x) € o(x) for
each x € A.

Write x = u+ i v where u := Re(x) and v := Im(x). By the
hypothesis on ¢ it follows that

[0 (") ¢ (™) —1] /o ([e™e™ —1] /t).

Hence, by Lemma 10(i), we have that

[etqﬁ() itp(v) }/tea([ tugity _ 1 1] /t).

If we let t — O, then, using the fact that A\ G(A) is closed in
A, it follows that ¥y (x) = ¢(u) + id(v) €o(u++ iv).
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Lemma 12
Let x be an element of S. Then

lim |x|e="™l = 0 and lim |x| (1 + in|x])"* = 0.

Proof
» We shall prove the result where a is any positive element of A:
We can assume without loss of generality that A is
commutative so that A = C(X) for some compact set X.
Define b, = ae™"® and ¢, = a(1 + ina) .
» Then
-1

|| bl = sup {a(X)e_"a(X) x € X} <sup{te™":t>0} < eT

> Similarly,

a(x) t 1
=supd —29 _vexbasp! 5t i>ol<=
el SUp{1+/na(X) x€ }_SUP{|1+/nt| —0}—,7

» Since |x| is positive we have the result.
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» Write x = u + iv and assume v4(x) = 0.
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Lemma 13
Let ¢ be a continuous spectrally multiplicative functional on a
C*-algebra A, and suppose x € A satisfies )4(x) = 0. Then
o(x) =0.
Proof

» Write x = u + iv and assume v4(x) = 0.

» Foreach ne Nlet W, := e "V luP+Iv[ and observe that

¢ (Wh) = ¥ (W) = 1.
» From (P1) it follows that

B(x) = o(x)¢ (Wh) € o (xWp) = o (uWp + VW) . (1)

» Using Lemma 12 we deduce that

limy/|ul?+ |v[?W, =0 = lim|ulW,=0 = limuW, =0,

and similarly lim, vW, = 0. Thus
lim xW,, = lim (uW, + vW,) = 0.
n n

and the result follows.
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Lemma 14

Let ¢ be a continuous spectrally multiplicative functional on a
C*-algebra A, o € C, and suppose x € A satisfies 14(x) = 0.
Then ¢(al + x) = c,, for some ¢, € [0,1].
Proof
> With W, = e ™V IulP+HIvE2 |ep v, .= éan, and set
Co = éqb(al + x). From earlier we have lim, Y, = 0.
> Then

Co = éqﬁ(al +X)b (W) € 0 (Wp+ V). (2)

» Assume, to the contrary, that ¢, ¢ [0,1]. For each n, we have
that W, € S and o(W,) C [0,1]. From (2) we see that

Cal=W,—Y, ¢ G(A) implying that 1—Y,(ca1—W,)™ ! ¢ G(A).



» Since (c,1 — W,)™! is normal for each n, we have the
estimation

1
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» Since (c,1 — W,)™! is normal for each n, we have the
estimation

1

[(cat =) = ol = W) ) < dist ([0, 1], {ca})

» But this means that lim, Y,(c,1 — W,)~! = 0, hence
contradicting the fact that G(A) is open. Therefore
¢a € [0,1], and thus ¢(al + x) = cya.



Lemma 15
Let ¢ be a continuous spectrally multiplicative functional on a

C*-algebra A. If « € C and x € A satisfies 14(x) = 0, then
#(al + x) € {0, a}.



Lemma 15
Let ¢ be a continuous spectrally multiplicative functional on a

C*-algebra A. If « € C and x € A satisfies 14(x) = 0, then
#(al + x) € {0, a}.

-1
» For each n € N let V, := (1 + iny/|ul? + \VP) . Again

using Lemma 12, we have that

limy/|ul2+ |v[?V, =0 = lim|u|V, =0 = limuV, =0.



Lemma 15
Let ¢ be a continuous spectrally multiplicative functional on a
C*-algebra A. If « € C and x € A satisfies 14(x) = 0, then

#(al + x) € {0, a}.
-1
» For each n € N let V, := (1 + iny/|ul? + \VP) . Again

using Lemma 12, we have that
limy/|ul2+ |v[?V, =0 = lim|u|V, =0 = limuV, =0.
n n n

» Similarly lim, vV,, = 0. Observe that each V|, belongs to
G1(A), whence it follows that ¢(V,) = ¢4(V,) = 1.



Lemma 15

Let ¢ be a continuous spectrally multiplicative functional on a
C*-algebra A. If « € C and x € A satisfies 14(x) = 0, then
#(al + x) € {0, a}.

-1
» For each n € N let V, := (1 + iny/|ul? + \VP) . Again

using Lemma 12, we have that
limy/|ul2+ |v[?V, =0 = lim|u|V, =0 = limuV, =0.
n n n

» Similarly lim, vV,, = 0. Observe that each V|, belongs to
G1(A), whence it follows that ¢(V,) = ¢4(V,) = 1.

» Let @ # 0. From Lemma 14, we have that ¢(al + x) = c,«,
with ¢, € [0,1]. To obtain the result we have to show that
ca € {0,1}: For the sake of a contradiction assume that
0<cy <1 Ifweset Z,:= éxV,, = =(u+ iv)V,, then

1
a

o= égb(al +X)0(Vy) € 0 (Vo + Z0). (3)



» The first paragraph of the proof shows that lim, Z, = 0, and
(3) shows that c,1 — V,, — Z, ¢ G(A).
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» From the definition of V,, we have that o (V,) C C,, where C,
is the circle in C with center % and radius %: Owing to the
fact that G, "R = {0, 1}, we infer that ¢, ¢ o (V,). Thus

¢l —Vy,—2Z, ¢ G(A) and ¢, 1 — V,, € G(A),

which together implies that 1 — Z, (cal — V) ! ¢ G(A).

» Since V, is normal we obtain the estimate

1

[t = v = (et =Vl ) < e e

from which it follows that lim, Z, (c,1 — Vn)*1 =0,
contradicting the fact that G(A) is open. Subsequently
ca € {0,1}, and ¢(al + x) € {0, a} follows as advertised.
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» From the definition of V,, we have that o (V,) C C,, where C,
is the circle in C with center % and radius %: Owing to the
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Theorem 16 (Brits, Sebastian, Touré, 2022)

Let ¢ be a continuous spectrally multiplicative functional on a
C*-algebra A. Then ¢(x) = 14(x) for all x in A, and hence ¢ is a
character of A.

» For x € A define K :={a € C: ¢(al + x) = 0} and assume
P(x) =0

» Then, by observing that K, is nonempty and compact, one
easily proves that K, = {0}

» Invoking Lemma 15 again we then obtain ¢(al + x) = « for
each o € C.

» For any value of 14(x) we use the first part of the proof to
deduce that

¢(x) = & (Y (X)L + [x = ¥ (x)1]) = 1s(x)-



As a direct consequence of Theorem 16 one also has the following:

Theorem 17

Let ¢ be a continuous functional on a C*-algebra A satisfying
o(x)o(y) € o(xy) for all x,y € A Then. either ¢ is a character of
A or —¢ is a character of A.



