A Multiplicative Spectral Characterization of Characters of C^* -algebras

R. Brits, M. Mabrouk, F. Schulz, G. Sebastian and C. Touré

Banach Algebras and their Applications

Granada, July 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

In general A is a complex and unital Banach algebra, with unit denoted ${\bf 1}$

In general A is a complex and unital Banach algebra, with unit denoted ${\bf 1}$

• G(A) is the invertible group of A.

In general A is a complex and unital Banach algebra, with unit denoted ${\bf 1}$

• G(A) is the invertible group of A.

• $G_1(A)$ is the connected component of G(A) containing **1**.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

In general A is a complex and unital Banach algebra, with unit denoted ${\bf 1}$

- G(A) is the invertible group of A.
- $G_1(A)$ is the connected component of G(A) containing 1.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $\sigma(a) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} - a \text{ is not invertible in } A\}.$

In general A is a complex and unital Banach algebra, with unit denoted ${\bf 1}$

- G(A) is the invertible group of A.
- $G_1(A)$ is the connected component of G(A) containing 1.
- $\sigma(a) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \text{ is not invertible in } A\}.$

Definition 1 (character)

If A is a Banach algebra then a linear and multiplicative functional $\chi : A \to \mathbb{C}$ is called a character of A.

In general A is a complex and unital Banach algebra, with unit denoted ${\bf 1}$

- G(A) is the invertible group of A.
- $G_1(A)$ is the connected component of G(A) containing 1.
- $\sigma(a) = \{\lambda \in \mathbb{C} : \lambda \mathbf{1} a \text{ is not invertible in } A\}.$

Definition 1 (character)

If A is a Banach algebra then a linear and multiplicative functional $\chi : A \to \mathbb{C}$ is called a character of A.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• If χ is a character of A then for each $x \in A$, $\chi(x) \in \sigma(x)$

Motivation

Theorem 1 (Gleason-Kahane-Želazko, 1967-1968) Let A be a complex Banach algebra. Then a linear functional $\phi : A \to \mathbb{C}$ is a character of A if and only if $\phi(x) \in \sigma(x)$ for each $x \in A$.

Motivation

Theorem 1 (Gleason-Kahane-Zelazko, 1967-1968) Let A be a complex Banach algebra. Then a linear functional $\phi : A \to \mathbb{C}$ is a character of A if and only if $\phi(x) \in \sigma(x)$ for each $x \in A$.

Theorem 2 (Kowalski-Słodkowski, 1980)

Let A be a complex Banach algebra. Then a functional $\phi : A \to \mathbb{C}$ is a character of A if and only if

$$\phi(x) + \phi(y) \in \sigma(x + y)$$
 for every $x, y \in A$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motivation

Theorem 1 (Gleason-Kahane-Zelazko, 1967-1968) Let A be a complex Banach algebra. Then a linear functional $\phi : A \to \mathbb{C}$ is a character of A if and only if $\phi(x) \in \sigma(x)$ for each $x \in A$.

Theorem 2 (Kowalski-Słodkowski, 1980)

Let A be a complex Banach algebra. Then a functional $\phi : A \to \mathbb{C}$ is a character of A if and only if

$$\phi(x) + \phi(y) \in \sigma(x + y)$$
 for every $x, y \in A$

So, this beckons the question: Are there multiplicative versions of these results? That is, if we replace "linear" by "multiplicative" in Gleason-Kahane-Żelazko and + by \times in Kowalski-Słodkowski, are the results still valid?

It doesn't look promising...

It doesn't look promising...

Consider the following: Let A = C² with the usual pointwise operations and any algebra norm. Define φ : A → C by

$$\phi((lpha,\gamma)) = \left\{ egin{array}{cc} \gamma & lpha
eq 0 \ 0 & lpha = 0. \end{array}
ight.$$

It is easy to see that ϕ is not linear but that it is multiplicative (and also homogeneous). Moreover, $\phi(x) \in \sigma(x)$ for each $x \in A$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

It doesn't look promising...

Consider the following: Let A = C² with the usual pointwise operations and any algebra norm. Define φ : A → C by

$$\phi((lpha,\gamma)) = \left\{ egin{array}{cc} \gamma & lpha
eq 0 \ 0 & lpha = 0. \end{array}
ight.$$

It is easy to see that ϕ is not linear but that it is multiplicative (and also homogeneous). Moreover, $\phi(x) \in \sigma(x)$ for each $x \in A$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- However, ϕ is clearly not continuous.
- It seems reasonable to add continuity to the assumptions in the multiplicative problem.

Further motivation comes from an old result of Carleson (of the Corona Problem):

Theorem 3 (Carleson, 1957)

Let ϕ be a nonzero continuous multiplicative functional on A, and let $x \in A$ be arbitrary. Then the map

 $\lambda \mapsto \log |\phi(x - \lambda \mathbf{1})|$

is harmonic on the unbounded connected component of $\mathbb{C} \setminus \sigma(x)$. So continuous multiplicative functionals do exhibit some good behaviour...

Theorem 4 (Maouche, 1996)

Let A be a Banach algebra, and let $\phi : A \to \mathbb{C}$ be a multiplicative function satisfying $\phi(x) \in \sigma(x)$ for each $x \in A$. Then, corresponding to ϕ , there exists a unique character on A which agrees with ϕ on $G_1(A)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem 4 (Maouche, 1996)

Let A be a Banach algebra, and let $\phi : A \to \mathbb{C}$ be a multiplicative function satisfying $\phi(x) \in \sigma(x)$ for each $x \in A$. Then, corresponding to ϕ , there exists a unique character on A which agrees with ϕ on $G_1(A)$.

Theorem 5 (Brits, Schulz, Touré, 2017)

Let A be a Banach algebra, and let ϕ be a multiplicative functional on A satisfying $\phi(x) \in \sigma(x)$ for each $x \in A$. Then the following are equivalent:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\blacktriangleright \phi$ is a character of A.

Theorem 4 (Maouche, 1996)

Let A be a Banach algebra, and let $\phi : A \to \mathbb{C}$ be a multiplicative function satisfying $\phi(x) \in \sigma(x)$ for each $x \in A$. Then, corresponding to ϕ , there exists a unique character on A which agrees with ϕ on $G_1(A)$.

Theorem 5 (Brits, Schulz, Touré, 2017)

Let A be a Banach algebra, and let ϕ be a multiplicative functional on A satisfying $\phi(x) \in \sigma(x)$ for each $x \in A$. Then the following are equivalent:

- $\blacktriangleright \phi$ is a character of A.
- For each x ∈ A the map λ → φ(λ1 − x) is an entire function on C.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem 4 (Maouche, 1996)

Let A be a Banach algebra, and let $\phi : A \to \mathbb{C}$ be a multiplicative function satisfying $\phi(x) \in \sigma(x)$ for each $x \in A$. Then, corresponding to ϕ , there exists a unique character on A which agrees with ϕ on $G_1(A)$.

Theorem 5 (Brits, Schulz, Touré, 2017)

Let A be a Banach algebra, and let ϕ be a multiplicative functional on A satisfying $\phi(x) \in \sigma(x)$ for each $x \in A$. Then the following are equivalent:

- $\blacktriangleright \phi$ is a character of A.
- For each x ∈ A the map λ → φ(λ1 − x) is an entire function on C.
- For each x ∈ A the map λ ↦ |φ(x − λ1) + λ| is subharmonic on C.

Let A be a von Neumann algebra and let $\phi : A \to \mathbb{C}$ be a multiplicative functional. Then ϕ is a character of A if and only if ϕ is continuous and $\phi(x) \in \sigma(x)$ for each $x \in A$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let A be a von Neumann algebra and let $\phi : A \to \mathbb{C}$ be a multiplicative functional. Then ϕ is a character of A if and only if ϕ is continuous and $\phi(x) \in \sigma(x)$ for each $x \in A$.

Theorem 7 (Brits, Mabrouk, Touré, 2021)

Let A be any C^{*}-algebra and let $\phi : A \to \mathbb{C}$ be a multiplicative functional. Then ϕ is a character of A if and only if ϕ is continuous and $\phi(x) \in \sigma(x)$ for each $x \in A$.

Let A be a von Neumann algebra and let $\phi : A \to \mathbb{C}$ be a multiplicative functional. Then ϕ is a character of A if and only if ϕ is continuous and $\phi(x) \in \sigma(x)$ for each $x \in A$.

Theorem 7 (Brits, Mabrouk, Touré, 2021)

Let A be any C^{*}-algebra and let $\phi : A \to \mathbb{C}$ be a multiplicative functional. Then ϕ is a character of A if and only if ϕ is continuous and $\phi(x) \in \sigma(x)$ for each $x \in A$.

Theorem 8 (Brits, Schulz, Touré, 2018)

Let A be a Banach algebra such that $\sigma(x)$ is totally disconnected for each $x \in A$. If a functional ϕ on A is continuous and satisfies $\phi(x)\phi(y) \in \sigma(xy)$ for all $x, y \in A$, then either ϕ or $-\phi$ is a character of A. In particular if A is a scattered Banach algebra then ϕ or $-\phi$ is a character of A

Spectrally Multiplicative Functionals on C^* -Algebras

Throughout this section A is a unital C^* -algebra. We denote by S the collection of all self-adjoint elements of A. We shall consider a function $\phi : A \to \mathbb{C}$ satisfying the following conditions:

(P1)
$$\phi(x)\phi(y) \in \sigma(xy)$$
 for all $x, y \in A$,

(P2) $\phi(1) = 1$,

(P3) ϕ is continuous on A.

and refer to a functional satisfying (P1)-(P2) as a spectrally multiplicative functional.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lemma 9 Let $x \in S$. If $\phi(x) \neq 0$, then: (i) $\phi(\mathbf{1} + ix) = 1 + i\phi(x)$, (ii) $\phi(tx) = t\phi(x)$, for each $t \in \mathbb{R}$, (iii) $\phi(e^{tx}) = e^{\phi(tx)} = e^{t\phi(x)}$, for each $t \in \mathbb{R}$, (iv) $\phi(x^n) = \phi(x)^n$, for each $n \in \mathbb{N}$.

Lemma 9 Let $x \in S$. If $\phi(x) \neq 0$, then: (i) $\phi(\mathbf{1} + ix) = 1 + i\phi(x)$, (ii) $\phi(tx) = t\phi(x)$, for each $t \in \mathbb{R}$, (iii) $\phi(e^{tx}) = e^{\phi(tx)} = e^{t\phi(x)}$, for each $t \in \mathbb{R}$, (iv) $\phi(x^n) = \phi(x)^n$, for each $n \in \mathbb{N}$.

Proof (iii)

• By (ii) it suffices to show that $\phi(e^x) = e^{\phi(x)}$.

Lemma 9 Let $x \in S$. If $\phi(x) \neq 0$, then: (i) $\phi(\mathbf{1} + ix) = 1 + i\phi(x)$, (ii) $\phi(tx) = t\phi(x)$, for each $t \in \mathbb{R}$, (iii) $\phi(e^{tx}) = e^{\phi(tx)} = e^{t\phi(x)}$, for each $t \in \mathbb{R}$, (iv) $\phi(x^n) = \phi(x)^n$, for each $n \in \mathbb{N}$.

Proof (iii)

• By (ii) it suffices to show that $\phi(e^x) = e^{\phi(x)}$.

Consider

$$\phi(e^{x})\phi(\mathbf{1}+ix)\in\sigma(e^{x}+ixe^{x}).$$

Lemma 9
Let
$$x \in S$$
. If $\phi(x) \neq 0$, then:
(i) $\phi(\mathbf{1} + ix) = \mathbf{1} + i\phi(x)$,
(ii) $\phi(tx) = t\phi(x)$, for each $t \in \mathbb{R}$,
(iii) $\phi(e^{tx}) = e^{\phi(tx)} = e^{t\phi(x)}$, for each $t \in \mathbb{R}$,
(iv) $\phi(x^n) = \phi(x)^n$, for each $n \in \mathbb{N}$.

Proof (iii)

• By (ii) it suffices to show that $\phi(e^x) = e^{\phi(x)}$.

Consider

$$\phi(e^{x})\phi(\mathbf{1}+ix)\in\sigma(e^{x}+ixe^{x}).$$

► Then, using (i),

$$\phi(e^{x}) + i\phi(e^{x})\phi(x) = e^{\gamma} + e^{\gamma}\gamma i$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

for some $\gamma \in \sigma(x)$.

Lemma 9
Let
$$x \in S$$
. If $\phi(x) \neq 0$, then:
(i) $\phi(\mathbf{1} + ix) = 1 + i\phi(x)$,
(ii) $\phi(tx) = t\phi(x)$, for each $t \in \mathbb{R}$,
(iii) $\phi(e^{tx}) = e^{\phi(tx)} = e^{t\phi(x)}$, for each $t \in \mathbb{R}$,
(iv) $\phi(x^n) = \phi(x)^n$, for each $n \in \mathbb{N}$.

Proof (iii)

• By (ii) it suffices to show that $\phi(e^x) = e^{\phi(x)}$.

Consider

$$\phi(e^{x})\phi(\mathbf{1}+ix)\in\sigma(e^{x}+ixe^{x}).$$

Then, using (i),

$$\phi(e^{x}) + i\phi(e^{x})\phi(x) = e^{\gamma} + e^{\gamma}\gamma i$$

for some $\gamma \in \sigma(x)$.

► Consequently $\phi(e^x) = e^{\gamma}$ and $\phi(x) = \gamma$ and so $\phi(e^x) = e^{\phi(x)}$.

 ϕ has the following properties:

(i) If $x \in S$, then $\phi(e^{\lambda x}) = e^{\lambda \phi(x)}$ holds for all $\lambda \in \mathbb{C}$. (ii) If $x, x_1, \dots, x_n \in S$, and $\lambda \in \mathbb{C}$, then

$$\phi\left(e^{\lambda x}e^{x_1}\cdots e^{x_n}\right)=\phi\left(e^{\lambda x}\right)\phi\left(e^{x_1}\right)\cdots\phi\left(e^{x_n}\right).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(iii) If $x, y \in S$, then $\phi(x + y) = \phi(x) + \phi(y)$.

 ϕ has the following properties:

(i) If $x \in S$, then $\phi(e^{\lambda x}) = e^{\lambda \phi(x)}$ holds for all $\lambda \in \mathbb{C}$. (ii) If $x, x_1, \dots, x_n \in S$, and $\lambda \in \mathbb{C}$, then

$$\phi\left(e^{\lambda x}e^{x_1}\cdots e^{x_n}\right)=\phi\left(e^{\lambda x}\right)\phi\left(e^{x_1}\right)\cdots\phi\left(e^{x_n}\right).$$

(iii) If
$$x, y \in S$$
, then $\phi(x + y) = \phi(x) + \phi(y)$.

Proof (iii)

▶ If $n \in \mathbb{N}$ then, from (i) and (ii), it follows that

$$\phi\left(\left[e^{x/n}e^{y/n}\right]^n\right)=e^{\phi(x)+\phi(y)}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 ϕ has the following properties:

(i) If $x \in S$, then $\phi(e^{\lambda x}) = e^{\lambda \phi(x)}$ holds for all $\lambda \in \mathbb{C}$. (ii) If $x, x_1, \dots, x_n \in S$, and $\lambda \in \mathbb{C}$, then

$$\phi\left(e^{\lambda x}e^{x_1}\cdots e^{x_n}\right)=\phi\left(e^{\lambda x}\right)\phi\left(e^{x_1}\right)\cdots\phi\left(e^{x_n}\right).$$

(iii) If $x, y \in S$, then $\phi(x + y) = \phi(x) + \phi(y)$.

Proof (iii)

▶ If $n \in \mathbb{N}$ then, from (i) and (ii), it follows that

$$\phi\left(\left[e^{x/n}e^{y/n}\right]^n\right)=e^{\phi(x)+\phi(y)}.$$

• But, by continuity and the Lie-Trotter formula, we have $\lim_{n} \phi\left(\left[e^{x/n}e^{y/n}\right]^{n}\right) = \phi\left(\lim_{n} \left[e^{x/n}e^{y/n}\right]^{n}\right) = \phi\left(e^{x+y}\right) = e^{\phi(x+y)}.$

 ϕ has the following properties:

(i) If $x \in S$, then $\phi(e^{\lambda x}) = e^{\lambda \phi(x)}$ holds for all $\lambda \in \mathbb{C}$. (ii) If $x, x_1, \dots, x_n \in S$, and $\lambda \in \mathbb{C}$, then

$$\phi\left(e^{\lambda x}e^{x_1}\cdots e^{x_n}\right)=\phi\left(e^{\lambda x}\right)\phi\left(e^{x_1}\right)\cdots\phi\left(e^{x_n}\right).$$

(iii) If $x, y \in S$, then $\phi(x + y) = \phi(x) + \phi(y)$.

Proof (iii)

▶ If $n \in \mathbb{N}$ then, from (i) and (ii), it follows that

$$\phi\left(\left[e^{x/n}e^{y/n}\right]^n\right)=e^{\phi(x)+\phi(y)}.$$

▶ But, by continuity and the Lie-Trotter formula, we have $\lim_{n} \phi\left(\left[e^{x/n}e^{y/n}\right]^{n}\right) = \phi\left(\lim_{n} \left[e^{x/n}e^{y/n}\right]^{n}\right) = \phi\left(e^{x+y}\right) = e^{\phi(x+y)}.$

Since ϕ takes real values on $\mathcal S$ we have the result.

The formula

$$\psi_{\phi}(x) := \phi\left(\operatorname{Re}(x)\right) + i\phi\left(\operatorname{Im}(x)\right)$$

defines a character on A, moreover, ψ_{ϕ} agrees with ϕ on $G_1(A) \cup S$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The formula

$$\psi_{\phi}(x) := \phi\left(\operatorname{Re}(x)\right) + i\phi\left(\operatorname{Im}(x)\right)$$

defines a character on A, moreover, ψ_{ϕ} agrees with ϕ on $G_1(A) \cup S$ Proof

By Lemma 10 (iii), together with Kowalski-Słodkowski, ψ_φ would be a character if we can prove that ψ_φ(x) ∈ σ(x) for each x ∈ A.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The formula

$$\psi_{\phi}(x) := \phi\left(\operatorname{Re}(x)\right) + i\phi\left(\operatorname{Im}(x)\right)$$

defines a character on A, moreover, ψ_{ϕ} agrees with ϕ on $G_1(A) \cup S$ Proof

- By Lemma 10 (iii), together with Kowalski-Słodkowski, ψ_φ would be a character if we can prove that ψ_φ(x) ∈ σ(x) for each x ∈ A.
- Write x = u + i v where u := Re(x) and v := Im(x). By the hypothesis on φ it follows that

$$\left[\phi\left(e^{tu}\right)\phi\left(e^{itv}\right)-1\right]/t\in\sigma\left(\left[e^{tu}e^{itv}-1\right]/t\right).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The formula

$$\psi_{\phi}(x) := \phi\left(\operatorname{Re}(x)\right) + i\phi\left(\operatorname{Im}(x)\right)$$

defines a character on A, moreover, ψ_{ϕ} agrees with ϕ on $G_1(A) \cup S$ Proof

- By Lemma 10 (iii), together with Kowalski-Słodkowski, ψ_φ would be a character if we can prove that ψ_φ(x) ∈ σ(x) for each x ∈ A.
- Write x = u + i v where u := Re(x) and v := Im(x). By the hypothesis on φ it follows that

$$\left[\phi\left(e^{tu}\right)\phi\left(e^{itv}\right)-1\right]/t\in\sigma\left(\left[e^{tu}e^{itv}-1\right]/t\right).$$

Hence, by Lemma 10(i), we have that

$$\left[e^{t\phi(u)}e^{it\phi(v)}-1\right]/t\in\sigma\left(\left[e^{tu}e^{itv}-\mathbf{1}\right]/t
ight).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The formula

$$\psi_{\phi}(x) := \phi\left(\operatorname{Re}(x)\right) + i\phi\left(\operatorname{Im}(x)\right)$$

defines a character on A, moreover, ψ_{ϕ} agrees with ϕ on $G_1(A) \cup S$ Proof

- By Lemma 10 (iii), together with Kowalski-Słodkowski, ψ_φ would be a character if we can prove that ψ_φ(x) ∈ σ(x) for each x ∈ A.
- Write x = u + i v where u := Re(x) and v := Im(x). By the hypothesis on φ it follows that

$$\left[\phi\left(e^{tu}\right)\phi\left(e^{itv}\right)-1\right]/t\in\sigma\left(\left[e^{tu}e^{itv}-1\right]/t\right).$$

Hence, by Lemma 10(i), we have that

$$\left[e^{t\phi(u)}e^{it\phi(v)}-1\right]/t\in\sigma\left(\left[e^{tu}e^{itv}-\mathbf{1}\right]/t
ight).$$

▶ If we let $t \to 0$, then, using the fact that $A \setminus G(A)$ is closed in A, it follows that $\psi_{\phi}(x) = \phi(u) + i\phi(v) \in \sigma(u + iv)$.

Lemma 12 Let x be an element of S. Then

$$\lim_{n} |x|e^{-n|x|} = \mathbf{0} \text{ and } \lim_{n} |x| (\mathbf{1} + in|x|)^{-1} = \mathbf{0}.$$

Let x be an element of S. Then

$$\lim_{n} |x|e^{-n|x|} = \mathbf{0} \text{ and } \lim_{n} |x| (\mathbf{1} + in|x|)^{-1} = \mathbf{0}.$$

Proof

We shall prove the result where a is any positive element of A: We can assume without loss of generality that A is commutative so that A = C(X) for some compact set X. Define b_n = ae^{-na} and c_n = a (1 + ina)⁻¹.

Let x be an element of S. Then

$$\lim_{n} |x|e^{-n|x|} = \mathbf{0} \text{ and } \lim_{n} |x| (\mathbf{1} + in|x|)^{-1} = \mathbf{0}.$$

Proof

 We shall prove the result where a is any positive element of A: We can assume without loss of generality that A is commutative so that A = C(X) for some compact set X. Define b_n = ae^{-na} and c_n = a(1 + ina)⁻¹.
 Then

$$\|b_n\| = \sup\left\{a(x)e^{-na(x)} : x \in X\right\} \le \sup\left\{te^{-nt} : t \ge 0\right\} \le \frac{e^{-1}}{n}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let x be an element of S. Then

$$\lim_{n} |x|e^{-n|x|} = \mathbf{0} \text{ and } \lim_{n} |x| (\mathbf{1} + in|x|)^{-1} = \mathbf{0}.$$

Proof

 We shall prove the result where a is any positive element of A: We can assume without loss of generality that A is commutative so that A = C(X) for some compact set X. Define b_n = ae^{-na} and c_n = a (1 + ina)⁻¹.
 Then

$$|b_n|| = \sup\left\{a(x)e^{-na(x)} : x \in X\right\} \le \sup\left\{te^{-nt} : t \ge 0\right\} \le \frac{e^{-1}}{n}$$

Similarly,

$$\|c_n\| = \sup\left\{\frac{a(x)}{|1+ina(x)|} : x \in X\right\} \le \sup\left\{\frac{t}{|1+int|} : t \ge 0\right\} \le \frac{1}{n}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let x be an element of S. Then

$$\lim_{n} |x|e^{-n|x|} = \mathbf{0} \text{ and } \lim_{n} |x| (\mathbf{1} + in|x|)^{-1} = \mathbf{0}.$$

Proof

 We shall prove the result where a is any positive element of A: We can assume without loss of generality that A is commutative so that A = C(X) for some compact set X. Define b_n = ae^{-na} and c_n = a (1 + ina)⁻¹.
 Then

$$|b_n|| = \sup\left\{a(x)e^{-na(x)} : x \in X\right\} \le \sup\left\{te^{-nt} : t \ge 0\right\} \le \frac{e^{-1}}{n}$$

Similarly,

$$\|c_n\| = \sup\left\{\frac{a(x)}{|1+ina(x)|} : x \in X\right\} \le \sup\left\{\frac{t}{|1+int|} : t \ge 0\right\} \le \frac{1}{n}$$

Since |x| is positive we have the result. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle$

Let ϕ be a continuous spectrally multiplicative functional on a C^* -algebra A, and suppose $x \in A$ satisfies $\psi_{\phi}(x) = 0$. Then $\phi(x) = 0$.

Let ϕ be a continuous spectrally multiplicative functional on a C^* -algebra A, and suppose $x \in A$ satisfies $\psi_{\phi}(x) = 0$. Then $\phi(x) = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof

• Write x = u + iv and assume $\psi_{\phi}(x) = 0$.

Let ϕ be a continuous spectrally multiplicative functional on a C^* -algebra A, and suppose $x \in A$ satisfies $\psi_{\phi}(x) = 0$. Then $\phi(x) = 0$.

Proof

- Write x = u + iv and assume $\psi_{\phi}(x) = 0$.
- For each $n \in \mathbb{N}$ let $W_n := e^{-n\sqrt{|u|^2 + |v|^2}}$ and observe that $\phi(W_n) = \psi_{\phi}(W_n) = 1$.

Let ϕ be a continuous spectrally multiplicative functional on a C^* -algebra A, and suppose $x \in A$ satisfies $\psi_{\phi}(x) = 0$. Then $\phi(x) = 0$.

Proof

- Write x = u + iv and assume $\psi_{\phi}(x) = 0$.
- For each $n \in \mathbb{N}$ let $W_n := e^{-n\sqrt{|u|^2 + |v|^2}}$ and observe that $\phi(W_n) = \psi_{\phi}(W_n) = 1$.
- From (P1) it follows that

$$\phi(x) = \phi(x)\phi(W_n) \in \sigma(xW_n) = \sigma(uW_n + ivW_n).$$
(1)

Let ϕ be a continuous spectrally multiplicative functional on a C^* -algebra A, and suppose $x \in A$ satisfies $\psi_{\phi}(x) = 0$. Then $\phi(x) = 0$.

Proof

- Write x = u + iv and assume $\psi_{\phi}(x) = 0$.
- For each $n \in \mathbb{N}$ let $W_n := e^{-n\sqrt{|u|^2 + |v|^2}}$ and observe that $\phi(W_n) = \psi_{\phi}(W_n) = 1$.
- From (P1) it follows that

$$\phi(x) = \phi(x)\phi(W_n) \in \sigma(xW_n) = \sigma(uW_n + ivW_n).$$
(1)

Using Lemma 12 we deduce that

$$\lim_{n} \sqrt{|u|^{2} + |v|^{2}} W_{n} = \mathbf{0} \implies \lim_{n} |u|W_{n} = \mathbf{0} \implies \lim_{n} uW_{n} = \mathbf{0},$$

and similarly $\lim_{n} vW_{n} = \mathbf{0}$. Thus
$$\lim_{n} xW_{n} = \lim_{n} (uW_{n} + ivW_{n}) = \mathbf{0}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and the result follows.

Let ϕ be a continuous spectrally multiplicative functional on a C^* -algebra $A, \alpha \in \mathbb{C}$, and suppose $x \in A$ satisfies $\psi_{\phi}(x) = 0$. Then $\phi(\alpha \mathbf{1} + x) = c_{\alpha}\alpha$, for some $c_{\alpha} \in [0, 1]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let ϕ be a continuous spectrally multiplicative functional on a C^* -algebra $A, \alpha \in \mathbb{C}$, and suppose $x \in A$ satisfies $\psi_{\phi}(x) = 0$. Then $\phi(\alpha \mathbf{1} + x) = c_{\alpha}\alpha$, for some $c_{\alpha} \in [0, 1]$.

Proof

• With
$$W_n := e^{-n\sqrt{|u|^2 + |v|^2}}$$
 let $Y_n := \frac{1}{\alpha} x W_n$, and set $c_\alpha := \frac{1}{\alpha} \phi(\alpha \mathbf{1} + x)$. From earlier we have $\lim_n Y_n = \mathbf{0}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let ϕ be a continuous spectrally multiplicative functional on a C^* -algebra $A, \alpha \in \mathbb{C}$, and suppose $x \in A$ satisfies $\psi_{\phi}(x) = 0$. Then $\phi(\alpha \mathbf{1} + x) = c_{\alpha}\alpha$, for some $c_{\alpha} \in [0, 1]$. Proof

Let ϕ be a continuous spectrally multiplicative functional on a C^* -algebra $A, \alpha \in \mathbb{C}$, and suppose $x \in A$ satisfies $\psi_{\phi}(x) = 0$. Then $\phi(\alpha \mathbf{1} + x) = c_{\alpha}\alpha$, for some $c_{\alpha} \in [0, 1]$. Proof

• With
$$W_n := e^{-n\sqrt{|u|^2 + |v|^2}}$$
 let $Y_n := \frac{1}{\alpha} x W_n$, and set $c_\alpha := \frac{1}{\alpha} \phi(\alpha \mathbf{1} + x)$. From earlier we have $\lim_n Y_n = \mathbf{0}$.

Then

$$c_{\alpha} = \frac{1}{\alpha} \phi(\alpha \mathbf{1} + x) \phi(W_n) \in \sigma(W_n + Y_n).$$
 (2)

▶ Assume, to the contrary, that $c_{\alpha} \notin [0, 1]$. For each *n*, we have that $W_n \in S$ and $\sigma(W_n) \subseteq [0, 1]$. From (2) we see that

 $c_{\alpha}\mathbf{1}-W_n-Y_n\notin G(A)$ implying that $\mathbf{1}-Y_n(c_{\alpha}\mathbf{1}-W_n)^{-1}\notin G(A)$.

Since $(c_{\alpha}\mathbf{1} - W_n)^{-1}$ is normal for each *n*, we have the estimation

$$\left\|\left(c_{\alpha}\mathbf{1}-W_{n}\right)^{-1}\right\|=\rho\big((c_{\alpha}\mathbf{1}-W_{n})^{-1}\big)\leq\frac{1}{\mathrm{dist}\big([0,1],\{c_{\alpha}\}\big)}$$

<ロト < 団ト < 三ト < 三ト < 三 ・ つへの</p>

Since $(c_{\alpha}\mathbf{1} - W_n)^{-1}$ is normal for each *n*, we have the estimation

$$\left\|\left(c_{\alpha}\mathbf{1}-W_{n}\right)^{-1}\right\|=\rho\left(\left(c_{\alpha}\mathbf{1}-W_{n}\right)^{-1}\right)\leq\frac{1}{\mathrm{dist}\left([0,1],\{c_{\alpha}\}\right)}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

But this means that lim_n Y_n(c_α1 − W_n)⁻¹ = 0, hence contradicting the fact that G(A) is open. Therefore c_α ∈ [0, 1], and thus φ(α1 + x) = c_αα.

Let ϕ be a continuous spectrally multiplicative functional on a C^* -algebra A. If $\alpha \in \mathbb{C}$ and $x \in A$ satisfies $\psi_{\phi}(x) = 0$, then $\phi(\alpha \mathbf{1} + x) \in \{0, \alpha\}$.

Let ϕ be a continuous spectrally multiplicative functional on a C^* -algebra A. If $\alpha \in \mathbb{C}$ and $x \in A$ satisfies $\psi_{\phi}(x) = 0$, then $\phi(\alpha \mathbf{1} + x) \in \{0, \alpha\}$.

For each
$$n \in \mathbb{N}$$
 let $V_n := (1 + in\sqrt{|u|^2 + |v|^2})^{-1}$. Again using Lemma 12, we have that

$$\lim_{n} \sqrt{|u|^2 + |v|^2} V_n = \mathbf{0} \implies \lim_{n} |u| V_n = \mathbf{0} \implies \lim_{n} u V_n = \mathbf{0}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let ϕ be a continuous spectrally multiplicative functional on a C^* -algebra A. If $\alpha \in \mathbb{C}$ and $x \in A$ satisfies $\psi_{\phi}(x) = 0$, then $\phi(\alpha \mathbf{1} + x) \in \{0, \alpha\}$.

For each
$$n \in \mathbb{N}$$
 let $V_n := (1 + in\sqrt{|u|^2 + |v|^2})^{-1}$. Again using Lemma 12, we have that

$$\lim_{n} \sqrt{|u|^2 + |v|^2} V_n = \mathbf{0} \implies \lim_{n} |u| V_n = \mathbf{0} \implies \lim_{n} u V_n = \mathbf{0}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Similarly $\lim_{n} vV_n = \mathbf{0}$. Observe that each V_n belongs to $G_1(A)$, whence it follows that $\phi(V_n) = \psi_{\phi}(V_n) = 1$.

Let ϕ be a continuous spectrally multiplicative functional on a C^* -algebra A. If $\alpha \in \mathbb{C}$ and $x \in A$ satisfies $\psi_{\phi}(x) = 0$, then $\phi(\alpha \mathbf{1} + x) \in \{0, \alpha\}$.

For each
$$n \in \mathbb{N}$$
 let $V_n := (1 + in\sqrt{|u|^2 + |v|^2})^{-1}$. Again using Lemma 12, we have that

$$\lim_{n} \sqrt{|u|^2 + |v|^2} V_n = \mathbf{0} \implies \lim_{n} |u| V_n = \mathbf{0} \implies \lim_{n} u V_n = \mathbf{0}.$$

- Similarly $\lim_{n} vV_n = \mathbf{0}$. Observe that each V_n belongs to $G_1(A)$, whence it follows that $\phi(V_n) = \psi_{\phi}(V_n) = 1$.
- Let α ≠ 0. From Lemma 14, we have that φ(α1 + x) = c_αα, with c_α ∈ [0, 1]. To obtain the result we have to show that c_α ∈ {0, 1}: For the sake of a contradiction assume that 0 < c_α < 1. If we set Z_n := ¹/_αxV_n = ¹/_α(u + iv)V_n, then

$$c_{\alpha} = \frac{1}{\alpha} \phi(\alpha \mathbf{1} + x) \phi(V_n) \in \sigma(V_n + Z_n). \tag{3}$$

The first paragraph of the proof shows that $\lim_{n} Z_n = \mathbf{0}$, and (3) shows that $c_{\alpha}\mathbf{1} - V_n - Z_n \notin G(A)$.

- The first paragraph of the proof shows that $\lim_{n} Z_n = \mathbf{0}$, and (3) shows that $c_{\alpha}\mathbf{1} V_n Z_n \notin G(A)$.
- From the definition of V_n we have that $\sigma(V_n) \subseteq C_r$, where C_r is the circle in \mathbb{C} with center $\frac{1}{2}$ and radius $\frac{1}{2}$: Owing to the fact that $C_r \cap \mathbb{R} = \{0, 1\}$, we infer that $c_\alpha \notin \sigma(V_n)$. Thus

$$c_{lpha}\mathbf{1}-V_{n}-Z_{n}
otin G(A)$$
 and $c_{lpha}\mathbf{1}-V_{n}\in G(A),$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

which together implies that $1 - Z_n (c_\alpha 1 - V_n)^{-1} \notin G(A)$.

- The first paragraph of the proof shows that $\lim_{n} Z_n = \mathbf{0}$, and (3) shows that $c_{\alpha}\mathbf{1} V_n Z_n \notin G(A)$.
- From the definition of V_n we have that $\sigma(V_n) \subseteq C_r$, where C_r is the circle in \mathbb{C} with center $\frac{1}{2}$ and radius $\frac{1}{2}$: Owing to the fact that $C_r \cap \mathbb{R} = \{0, 1\}$, we infer that $c_\alpha \notin \sigma(V_n)$. Thus

$$c_{\alpha}\mathbf{1}-V_n-Z_n\notin G(A)$$
 and $c_{\alpha}\mathbf{1}-V_n\in G(A),$

which together implies that $1 - Z_n (c_\alpha 1 - V_n)^{-1} \notin G(A)$. Since V_n is normal we obtain the estimate

$$\left\| (c_{\alpha}\mathbf{1} - V_n)^{-1} \right\| = \rho \left((c_{\alpha}\mathbf{1} - V_n)^{-1} \right) \leq \frac{1}{\operatorname{dist}(C_r, \{c_{\alpha}\})}$$

from which it follows that $\lim_{n} Z_n (c_{\alpha} \mathbf{1} - V_n)^{-1} = \mathbf{0}$, contradicting the fact that G(A) is open. Subsequently $c_{\alpha} \in \{0, 1\}$, and $\phi(\alpha \mathbf{1} + x) \in \{0, \alpha\}$ follows as advertised.

- The first paragraph of the proof shows that $\lim_{n} Z_n = \mathbf{0}$, and (3) shows that $c_{\alpha}\mathbf{1} V_n Z_n \notin G(A)$.
- From the definition of V_n we have that $\sigma(V_n) \subseteq C_r$, where C_r is the circle in \mathbb{C} with center $\frac{1}{2}$ and radius $\frac{1}{2}$: Owing to the fact that $C_r \cap \mathbb{R} = \{0, 1\}$, we infer that $c_\alpha \notin \sigma(V_n)$. Thus

$$c_{\alpha}\mathbf{1}-V_n-Z_n\notin G(A)$$
 and $c_{\alpha}\mathbf{1}-V_n\in G(A),$

which together implies that $1 - Z_n (c_\alpha 1 - V_n)^{-1} \notin G(A)$. Since V_n is normal we obtain the estimate

$$\left\| (c_{\alpha}\mathbf{1} - V_n)^{-1} \right\| = \rho \left((c_{\alpha}\mathbf{1} - V_n)^{-1} \right) \leq \frac{1}{\operatorname{dist}(C_r, \{c_{\alpha}\})}$$

from which it follows that $\lim_{n} Z_n (c_{\alpha} \mathbf{1} - V_n)^{-1} = \mathbf{0}$, contradicting the fact that G(A) is open. Subsequently $c_{\alpha} \in \{0, 1\}$, and $\phi(\alpha \mathbf{1} + x) \in \{0, \alpha\}$ follows as advertised.

Let ϕ be a continuous spectrally multiplicative functional on a C^* -algebra A. Then $\phi(x) = \psi_{\phi}(x)$ for all x in A, and hence ϕ is a character of A.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let ϕ be a continuous spectrally multiplicative functional on a C^* -algebra A. Then $\phi(x) = \psi_{\phi}(x)$ for all x in A, and hence ϕ is a character of A.

For $x \in A$ define $K_x := \{ \alpha \in \mathbb{C} : \phi(\alpha \mathbf{1} + x) = 0 \}$ and assume $\psi_{\phi}(x) = 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let ϕ be a continuous spectrally multiplicative functional on a C^* -algebra A. Then $\phi(x) = \psi_{\phi}(x)$ for all x in A, and hence ϕ is a character of A.

For $x \in A$ define $K_x := \{ \alpha \in \mathbb{C} : \phi(\alpha \mathbf{1} + x) = 0 \}$ and assume $\psi_{\phi}(x) = 0$

Then, by observing that K_x is nonempty and compact, one easily proves that K_x = {0}

Let ϕ be a continuous spectrally multiplicative functional on a C^* -algebra A. Then $\phi(x) = \psi_{\phi}(x)$ for all x in A, and hence ϕ is a character of A.

- For $x \in A$ define $K_x := \{ \alpha \in \mathbb{C} : \phi(\alpha \mathbf{1} + x) = 0 \}$ and assume $\psi_{\phi}(x) = 0$
- Then, by observing that K_x is nonempty and compact, one easily proves that K_x = {0}
- Invoking Lemma 15 again we then obtain φ(α1 + x) = α for each α ∈ C.

Let ϕ be a continuous spectrally multiplicative functional on a C^* -algebra A. Then $\phi(x) = \psi_{\phi}(x)$ for all x in A, and hence ϕ is a character of A.

- For $x \in A$ define $K_x := \{ \alpha \in \mathbb{C} : \phi(\alpha \mathbf{1} + x) = 0 \}$ and assume $\psi_{\phi}(x) = 0$
- Then, by observing that K_x is nonempty and compact, one easily proves that K_x = {0}
- Invoking Lemma 15 again we then obtain φ(α1 + x) = α for each α ∈ C.
- ► For any value of ψ_φ(x) we use the first part of the proof to deduce that

$$\phi(\mathbf{x}) = \phi\left(\psi_{\phi}(\mathbf{x})\mathbf{1} + [\mathbf{x} - \psi_{\phi}(\mathbf{x})\mathbf{1}]\right) = \psi_{\phi}(\mathbf{x}).$$

As a direct consequence of Theorem 16 one also has the following:

Theorem 17

Let ϕ be a continuous functional on a C*-algebra A satisfying $\phi(x)\phi(y) \in \sigma(xy)$ for all $x, y \in A$ Then. either ϕ is a character of A or $-\phi$ is a character of A.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00