A Multiplicative Spectral Characterization of Characters of C^{*}-algebras

R. Brits, M. Mabrouk, F. Schulz, G. Sebastian and C. Touré

Banach Algebras and their Applications

Granada, July 2022

Notation and Definitions

In general A is a complex and unital Banach algebra, with unit denoted 1

Notation and Definitions

In general A is a complex and unital Banach algebra, with unit denoted 1

- $G(A)$ is the invertible group of A.

Notation and Definitions

In general A is a complex and unital Banach algebra, with unit denoted 1

- $G(A)$ is the invertible group of A.
- $G_{1}(A)$ is the connected component of $G(A)$ containing 1 .

Notation and Definitions

In general A is a complex and unital Banach algebra, with unit denoted 1

- $G(A)$ is the invertible group of A.
- $G_{1}(A)$ is the connected component of $G(A)$ containing 1 .
- $\sigma(a)=\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a$ is not invertible in $A\}$.

Notation and Definitions

In general A is a complex and unital Banach algebra, with unit denoted 1

- $G(A)$ is the invertible group of A.
- $G_{1}(A)$ is the connected component of $G(A)$ containing 1 .
- $\sigma(a)=\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a$ is not invertible in $A\}$.

Definition 1 (character)
If A is a Banach algebra then a linear and multiplicative functional $\chi: A \rightarrow \mathbb{C}$ is called a character of A.

Notation and Definitions

In general A is a complex and unital Banach algebra, with unit denoted 1

- $G(A)$ is the invertible group of A.
- $G_{1}(A)$ is the connected component of $G(A)$ containing 1 .
- $\sigma(a)=\{\lambda \in \mathbb{C}: \lambda \mathbf{1}-a$ is not invertible in $A\}$.

Definition 1 (character)

If A is a Banach algebra then a linear and multiplicative functional $\chi: A \rightarrow \mathbb{C}$ is called a character of A.

- If χ is a character of A then for each $x \in A, \chi(x) \in \sigma(x)$

Motivation

Theorem 1 (Gleason-Kahane-Żelazko, 1967-1968)
Let A be a complex Banach algebra. Then a linear functional $\phi: A \rightarrow \mathbb{C}$ is a character of A if and only if $\phi(x) \in \sigma(x)$ for each $x \in A$.

Motivation

Theorem 1 (Gleason-Kahane-Żelazko, 1967-1968)
Let A be a complex Banach algebra. Then a linear functional $\phi: A \rightarrow \mathbb{C}$ is a character of A if and only if $\phi(x) \in \sigma(x)$ for each $x \in A$.

Theorem 2 (Kowalski-Słodkowski, 1980)
Let A be a complex Banach algebra. Then a functional $\phi: A \rightarrow \mathbb{C}$ is a character of A if and only if

$$
\phi(x)+\phi(y) \in \sigma(x+y) \text { for every } x, y \in A
$$

Motivation

Theorem 1 (Gleason-Kahane-Żelazko, 1967-1968)
Let A be a complex Banach algebra. Then a linear functional
$\phi: A \rightarrow \mathbb{C}$ is a character of A if and only if $\phi(x) \in \sigma(x)$ for each
$x \in A$.
Theorem 2 (Kowalski-Słodkowski, 1980)
Let A be a complex Banach algebra. Then a functional $\phi: A \rightarrow \mathbb{C}$ is a character of A if and only if

$$
\phi(x)+\phi(y) \in \sigma(x+y) \text { for every } x, y \in A
$$

So, this beckons the question: Are there multiplicative versions of these results? That is, if we replace "linear" by "multiplicative" in Gleason-Kahane-Żelazko and + by \times in Kowalski-Słodkowski, are the results still valid?

It doesn't look promising...

It doesn't look promising...

- Consider the following: Let $A=\mathbb{C}^{2}$ with the usual pointwise operations and any algebra norm. Define $\phi: A \rightarrow \mathbb{C}$ by

$$
\phi((\alpha, \gamma))= \begin{cases}\gamma & \alpha \neq 0 \\ 0 & \alpha=0\end{cases}
$$

It is easy to see that ϕ is not linear but that it is multiplicative (and also homogeneous). Moreover, $\phi(x) \in \sigma(x)$ for each $x \in A$.

It doesn't look promising...

- Consider the following: Let $A=\mathbb{C}^{2}$ with the usual pointwise operations and any algebra norm. Define $\phi: A \rightarrow \mathbb{C}$ by

$$
\phi((\alpha, \gamma))= \begin{cases}\gamma & \alpha \neq 0 \\ 0 & \alpha=0\end{cases}
$$

It is easy to see that ϕ is not linear but that it is multiplicative (and also homogeneous). Moreover, $\phi(x) \in \sigma(x)$ for each $x \in A$.

- However, ϕ is clearly not continuous.
- It seems reasonable to add continuity to the assumptions in the multiplicative problem.

Further motivation comes from an old result of Carleson (of the Corona Problem):

Theorem 3 (Carleson, 1957)
Let ϕ be a nonzero continuous multiplicative functional on A, and let $x \in A$ be arbitrary. Then the map

$$
\lambda \mapsto \log |\phi(x-\lambda \mathbf{1})|
$$

is harmonic on the unbounded connected component of $\mathbb{C} \backslash \sigma(x)$.
So continuous multiplicative functionals do exhibit some good behaviour...

Earlier results

Theorem 4 (Maouche, 1996)
Let A be a Banach algebra, and let $\phi: A \rightarrow \mathbb{C}$ be a multiplicative function satisfying $\phi(x) \in \sigma(x)$ for each $x \in A$. Then, corresponding to ϕ, there exists a unique character on A which agrees with ϕ on $G_{1}(A)$.

Earlier results

Theorem 4 (Maouche, 1996)
Let A be a Banach algebra, and let $\phi: A \rightarrow \mathbb{C}$ be a multiplicative function satisfying $\phi(x) \in \sigma(x)$ for each $x \in A$. Then, corresponding to ϕ, there exists a unique character on A which agrees with ϕ on $G_{1}(A)$.

Theorem 5 (Brits, Schulz, Touré, 2017)

Let A be a Banach algebra, and let ϕ be a multiplicative functional on A satisfying $\phi(x) \in \sigma(x)$ for each $x \in A$. Then the following are equivalent:

- ϕ is a character of A.

Earlier results

Theorem 4 (Maouche, 1996)
Let A be a Banach algebra, and let $\phi: A \rightarrow \mathbb{C}$ be a multiplicative function satisfying $\phi(x) \in \sigma(x)$ for each $x \in A$. Then, corresponding to ϕ, there exists a unique character on A which agrees with ϕ on $G_{1}(A)$.

Theorem 5 (Brits, Schulz, Touré, 2017)

Let A be a Banach algebra, and let ϕ be a multiplicative functional on A satisfying $\phi(x) \in \sigma(x)$ for each $x \in A$. Then the following are equivalent:

- ϕ is a character of A.
- For each $x \in A$ the map $\lambda \mapsto \phi(\lambda \mathbf{1}-x)$ is an entire function on \mathbb{C}.

Earlier results

Theorem 4 (Maouche, 1996)
Let A be a Banach algebra, and let $\phi: A \rightarrow \mathbb{C}$ be a multiplicative function satisfying $\phi(x) \in \sigma(x)$ for each $x \in A$. Then, corresponding to ϕ, there exists a unique character on A which agrees with ϕ on $G_{1}(A)$.

Theorem 5 (Brits, Schulz, Touré, 2017)
Let A be a Banach algebra, and let ϕ be a multiplicative functional on A satisfying $\phi(x) \in \sigma(x)$ for each $x \in A$. Then the following are equivalent:

- ϕ is a character of A.
- For each $x \in A$ the map $\lambda \mapsto \phi(\lambda \mathbf{1}-x)$ is an entire function on \mathbb{C}.
- For each $x \in A$ the map $\lambda \mapsto|\phi(x-\lambda \mathbf{1})+\lambda|$ is subharmonic on \mathbb{C}.

Theorem 6 (Brits, Schulz, Touré, 2017)
Let A be a von Neumann algebra and let $\phi: A \rightarrow \mathbb{C}$ be a multiplicative functional. Then ϕ is a character of A if and only if ϕ is continuous and $\phi(x) \in \sigma(x)$ for each $x \in A$.

Theorem 6 (Brits, Schulz, Touré, 2017)

Let A be a von Neumann algebra and let $\phi: A \rightarrow \mathbb{C}$ be a multiplicative functional. Then ϕ is a character of A if and only if ϕ is continuous and $\phi(x) \in \sigma(x)$ for each $x \in A$.

Theorem 7 (Brits, Mabrouk, Touré, 2021)
Let A be any C^{\star}-algebra and let $\phi: A \rightarrow \mathbb{C}$ be a multiplicative functional. Then ϕ is a character of A if and only if ϕ is continuous and $\phi(x) \in \sigma(x)$ for each $x \in A$.

Theorem 6 (Brits, Schulz, Touré, 2017)

Let A be a von Neumann algebra and let $\phi: A \rightarrow \mathbb{C}$ be a multiplicative functional. Then ϕ is a character of A if and only if ϕ is continuous and $\phi(x) \in \sigma(x)$ for each $x \in A$.

Theorem 7 (Brits, Mabrouk, Touré, 2021)
Let A be any C^{\star}-algebra and let $\phi: A \rightarrow \mathbb{C}$ be a multiplicative functional. Then ϕ is a character of A if and only if ϕ is continuous and $\phi(x) \in \sigma(x)$ for each $x \in A$.

Theorem 8 (Brits, Schulz, Touré, 2018)
Let A be a Banach algebra such that $\sigma(x)$ is totally disconnected for each $x \in A$. If a functional ϕ on A is continuous and satisfies $\phi(x) \phi(y) \in \sigma(x y)$ for all $x, y \in A$, then either ϕ or $-\phi$ is a character of A. In particular if A is a scattered Banach algebra then ϕ or $-\phi$ is a character of A

Spectrally Multiplicative Functionals on C^{\star}-Algebras

Throughout this section A is a unital C^{\star}-algebra. We denote by \mathcal{S} the collection of all self-adjoint elements of A. We shall consider a function $\phi: A \rightarrow \mathbb{C}$ satisfying the following conditions:
(P1) $\phi(x) \phi(y) \in \sigma(x y)$ for all $x, y \in A$,
(P2) $\phi(\mathbf{1})=1$,
(P3) ϕ is continuous on A.
and refer to a functional satisfying (P1)-(P2) as a spectrally multiplicative functional.

Lemma 9
Let $x \in \mathcal{S}$. If $\phi(x) \neq 0$, then:
(i) $\phi(\mathbf{1}+i x)=1+i \phi(x)$,
(ii) $\phi(t x)=t \phi(x)$, for each $t \in \mathbb{R}$,
(iii) $\phi\left(e^{t x}\right)=e^{\phi(t x)}=e^{t \phi(x)}$, for each $t \in \mathbb{R}$,
(iv) $\phi\left(x^{n}\right)=\phi(x)^{n}$, for each $n \in \mathbb{N}$.

Lemma 9
Let $x \in \mathcal{S}$. If $\phi(x) \neq 0$, then:
(i) $\phi(\mathbf{1}+i x)=1+i \phi(x)$,
(ii) $\phi(t x)=t \phi(x)$, for each $t \in \mathbb{R}$,
(iii) $\phi\left(e^{t x}\right)=e^{\phi(t x)}=e^{t \phi(x)}$, for each $t \in \mathbb{R}$,
(iv) $\phi\left(x^{n}\right)=\phi(x)^{n}$, for each $n \in \mathbb{N}$.

Proof (iii)

- By (ii) it suffices to show that $\phi\left(e^{x}\right)=e^{\phi(x)}$.

Lemma 9

Let $x \in \mathcal{S}$. If $\phi(x) \neq 0$, then:
(i) $\phi(\mathbf{1}+i x)=1+i \phi(x)$,
(ii) $\phi(t x)=t \phi(x)$, for each $t \in \mathbb{R}$,
(iii) $\phi\left(e^{t x}\right)=e^{\phi(t x)}=e^{t \phi(x)}$, for each $t \in \mathbb{R}$,
(iv) $\phi\left(x^{n}\right)=\phi(x)^{n}$, for each $n \in \mathbb{N}$.

Proof (iii)

- By (ii) it suffices to show that $\phi\left(e^{x}\right)=e^{\phi(x)}$.
- Consider

$$
\phi\left(e^{x}\right) \phi(\mathbf{1}+i x) \in \sigma\left(e^{x}+i x e^{x}\right) .
$$

Lemma 9

Let $x \in \mathcal{S}$. If $\phi(x) \neq 0$, then:
(i) $\phi(\mathbf{1}+i x)=1+i \phi(x)$,
(ii) $\phi(t x)=t \phi(x)$, for each $t \in \mathbb{R}$,
(iii) $\phi\left(e^{t x}\right)=e^{\phi(t x)}=e^{t \phi(x)}$, for each $t \in \mathbb{R}$,
(iv) $\phi\left(x^{n}\right)=\phi(x)^{n}$, for each $n \in \mathbb{N}$.

Proof (iii)

- By (ii) it suffices to show that $\phi\left(e^{x}\right)=e^{\phi(x)}$.
- Consider

$$
\phi\left(e^{x}\right) \phi(\mathbf{1}+i x) \in \sigma\left(e^{x}+i x e^{x}\right) .
$$

- Then, using (i),

$$
\phi\left(e^{x}\right)+i \phi\left(e^{x}\right) \phi(x)=e^{\gamma}+e^{\gamma} \gamma i
$$

for some $\gamma \in \sigma(x)$.

Lemma 9

Let $x \in \mathcal{S}$. If $\phi(x) \neq 0$, then:
(i) $\phi(\mathbf{1}+i x)=1+i \phi(x)$,
(ii) $\phi(t x)=t \phi(x)$, for each $t \in \mathbb{R}$,
(iii) $\phi\left(e^{t x}\right)=e^{\phi(t x)}=e^{t \phi(x)}$, for each $t \in \mathbb{R}$,
(iv) $\phi\left(x^{n}\right)=\phi(x)^{n}$, for each $n \in \mathbb{N}$.

Proof (iii)

- By (ii) it suffices to show that $\phi\left(e^{x}\right)=e^{\phi(x)}$.
- Consider

$$
\phi\left(e^{x}\right) \phi(\mathbf{1}+i x) \in \sigma\left(e^{x}+i x e^{x}\right) .
$$

- Then, using (i),

$$
\phi\left(e^{x}\right)+i \phi\left(e^{x}\right) \phi(x)=e^{\gamma}+e^{\gamma} \gamma i
$$

for some $\gamma \in \sigma(x)$.

- Consequently $\phi\left(e^{x}\right)=e^{\gamma}$ and $\phi(x)=\gamma$ and so $\phi\left(e^{x}\right)=e^{\phi(x)}$.

Lemma 10
ϕ has the following properties:
(i) If $x \in \mathcal{S}$, then $\phi\left(e^{\lambda x}\right)=e^{\lambda \phi(x)}$ holds for all $\lambda \in \mathbb{C}$.
(ii) If $x, x_{1}, \ldots, x_{n} \in \mathcal{S}$, and $\lambda \in \mathbb{C}$, then

$$
\phi\left(e^{\lambda x} e^{x_{1}} \cdots e^{x_{n}}\right)=\phi\left(e^{\lambda x}\right) \phi\left(e^{x_{1}}\right) \cdots \phi\left(e^{x_{n}}\right) .
$$

(iii) If $x, y \in \mathcal{S}$, then $\phi(x+y)=\phi(x)+\phi(y)$.

Lemma 10

ϕ has the following properties:
(i) If $x \in \mathcal{S}$, then $\phi\left(e^{\lambda x}\right)=e^{\lambda \phi(x)}$ holds for all $\lambda \in \mathbb{C}$.
(ii) If $x, x_{1}, \ldots, x_{n} \in \mathcal{S}$, and $\lambda \in \mathbb{C}$, then

$$
\phi\left(e^{\lambda x} e^{x_{1}} \cdots e^{x_{n}}\right)=\phi\left(e^{\lambda x}\right) \phi\left(e^{x_{1}}\right) \cdots \phi\left(e^{x_{n}}\right) .
$$

(iii) If $x, y \in \mathcal{S}$, then $\phi(x+y)=\phi(x)+\phi(y)$.

Proof (iii)

- If $n \in \mathbb{N}$ then, from (i) and (ii), it follows that

$$
\phi\left(\left[e^{x / n} e^{y / n}\right]^{n}\right)=e^{\phi(x)+\phi(y)}
$$

Lemma 10

ϕ has the following properties:
(i) If $x \in \mathcal{S}$, then $\phi\left(e^{\lambda x}\right)=e^{\lambda \phi(x)}$ holds for all $\lambda \in \mathbb{C}$.
(ii) If $x, x_{1}, \ldots, x_{n} \in \mathcal{S}$, and $\lambda \in \mathbb{C}$, then

$$
\phi\left(e^{\lambda x} e^{x_{1}} \cdots e^{x_{n}}\right)=\phi\left(e^{\lambda x}\right) \phi\left(e^{x_{1}}\right) \cdots \phi\left(e^{x_{n}}\right) .
$$

(iii) If $x, y \in \mathcal{S}$, then $\phi(x+y)=\phi(x)+\phi(y)$.

Proof (iii)

- If $n \in \mathbb{N}$ then, from (i) and (ii), it follows that

$$
\phi\left(\left[e^{x / n} e^{y / n}\right]^{n}\right)=e^{\phi(x)+\phi(y)}
$$

- But, by continuity and the Lie-Trotter formula, we have

$$
\lim _{n} \phi\left(\left[e^{x / n} e^{y / n}\right]^{n}\right)=\phi\left(\lim _{n}\left[e^{x / n} e^{y / n}\right]^{n}\right)=\phi\left(e^{x+y}\right)=e^{\phi(x+y)}
$$

Lemma 10

ϕ has the following properties:
(i) If $x \in \mathcal{S}$, then $\phi\left(e^{\lambda x}\right)=e^{\lambda \phi(x)}$ holds for all $\lambda \in \mathbb{C}$.
(ii) If $x, x_{1}, \ldots, x_{n} \in \mathcal{S}$, and $\lambda \in \mathbb{C}$, then

$$
\phi\left(e^{\lambda x} e^{x_{1}} \cdots e^{x_{n}}\right)=\phi\left(e^{\lambda x}\right) \phi\left(e^{x_{1}}\right) \cdots \phi\left(e^{x_{n}}\right) .
$$

(iii) If $x, y \in \mathcal{S}$, then $\phi(x+y)=\phi(x)+\phi(y)$.

Proof (iii)

- If $n \in \mathbb{N}$ then, from (i) and (ii), it follows that

$$
\phi\left(\left[e^{x / n} e^{y / n}\right]^{n}\right)=e^{\phi(x)+\phi(y)}
$$

- But, by continuity and the Lie-Trotter formula, we have

$$
\lim _{n} \phi\left(\left[e^{x / n} e^{y / n}\right]^{n}\right)=\phi\left(\lim _{n}\left[e^{x / n} e^{y / n}\right]^{n}\right)=\phi\left(e^{x+y}\right)=e^{\phi(x+y)} .
$$

- Since ϕ takes real values on \mathcal{S} we have the result.

Theorem 11 (Brits, Schulz, Touré, 2018)
The formula

$$
\psi_{\phi}(x):=\phi(\operatorname{Re}(x))+i \phi(\operatorname{lm}(x))
$$

defines a character on A, moreover, ψ_{ϕ} agrees with ϕ on $G_{1}(A) \cup \mathcal{S}$

Theorem 11 (Brits, Schulz, Touré, 2018)
The formula

$$
\psi_{\phi}(x):=\phi(\operatorname{Re}(x))+i \phi(\operatorname{lm}(x))
$$

defines a character on A, moreover, ψ_{ϕ} agrees with ϕ on $G_{1}(A) \cup \mathcal{S}$ Proof

- By Lemma 10 (iii), together with Kowalski-Słodkowski, ψ_{ϕ} would be a character if we can prove that $\psi_{\phi}(x) \in \sigma(x)$ for each $x \in A$.

Theorem 11 (Brits, Schulz, Touré, 2018)
The formula

$$
\psi_{\phi}(x):=\phi(\operatorname{Re}(x))+i \phi(\operatorname{lm}(x))
$$

defines a character on A, moreover, ψ_{ϕ} agrees with ϕ on $G_{1}(A) \cup \mathcal{S}$ Proof

- By Lemma 10 (iii), together with Kowalski-Słodkowski, ψ_{ϕ} would be a character if we can prove that $\psi_{\phi}(x) \in \sigma(x)$ for each $x \in A$.
- Write $x=u+i v$ where $u:=\operatorname{Re}(x)$ and $v:=\operatorname{Im}(x)$. By the hypothesis on ϕ it follows that

$$
\left[\phi\left(e^{t u}\right) \phi\left(e^{i t v}\right)-1\right] / t \in \sigma\left(\left[e^{t u} e^{i t v}-\mathbf{1}\right] / t\right) .
$$

Theorem 11 (Brits, Schulz, Touré, 2018)
The formula

$$
\psi_{\phi}(x):=\phi(\operatorname{Re}(x))+i \phi(\operatorname{lm}(x))
$$

defines a character on A, moreover, ψ_{ϕ} agrees with ϕ on $G_{1}(A) \cup \mathcal{S}$ Proof

- By Lemma 10 (iii), together with Kowalski-Słodkowski, ψ_{ϕ} would be a character if we can prove that $\psi_{\phi}(x) \in \sigma(x)$ for each $x \in A$.
- Write $x=u+i v$ where $u:=\operatorname{Re}(x)$ and $v:=\operatorname{Im}(x)$. By the hypothesis on ϕ it follows that

$$
\left[\phi\left(e^{t u}\right) \phi\left(e^{i t v}\right)-1\right] / t \in \sigma\left(\left[e^{t u} e^{i t v}-\mathbf{1}\right] / t\right)
$$

- Hence, by Lemma 10(i), we have that

$$
\left[e^{t \phi(u)} e^{i t \phi(v)}-1\right] / t \in \sigma\left(\left[e^{t u} e^{i t v}-\mathbf{1}\right] / t\right)
$$

Theorem 11 (Brits, Schulz, Touré, 2018)
The formula

$$
\psi_{\phi}(x):=\phi(\operatorname{Re}(x))+i \phi(\operatorname{lm}(x))
$$

defines a character on A, moreover, ψ_{ϕ} agrees with ϕ on $G_{1}(A) \cup \mathcal{S}$ Proof

- By Lemma 10 (iii), together with Kowalski-Słodkowski, ψ_{ϕ} would be a character if we can prove that $\psi_{\phi}(x) \in \sigma(x)$ for each $x \in A$.
- Write $x=u+i v$ where $u:=\operatorname{Re}(x)$ and $v:=\operatorname{Im}(x)$. By the hypothesis on ϕ it follows that

$$
\left[\phi\left(e^{t u}\right) \phi\left(e^{i t v}\right)-1\right] / t \in \sigma\left(\left[e^{t u} e^{i t v}-\mathbf{1}\right] / t\right)
$$

- Hence, by Lemma 10(i), we have that

$$
\left[e^{t \phi(u)} e^{i t \phi(v)}-1\right] / t \in \sigma\left(\left[e^{t u} e^{i t v}-\mathbf{1}\right] / t\right)
$$

- If we let $t \rightarrow 0$, then, using the fact that $A \backslash G(A)$ is closed in A, it follows that $\psi_{\phi}(x)=\phi(u)+i \phi(v) \in \sigma(u+i v)$.

Lemma 12
Let x be an element of \mathcal{S}. Then

$$
\lim _{n}|x| e^{-n|x|}=\mathbf{0} \text { and } \lim _{n}|x|(\mathbf{1}+i n|x|)^{-1}=\mathbf{0} .
$$

Lemma 12
Let x be an element of \mathcal{S}. Then

$$
\lim _{n}|x| e^{-n|x|}=\mathbf{0} \text { and } \lim _{n}|x|(\mathbf{1}+i n|x|)^{-1}=\mathbf{0} .
$$

Proof

- We shall prove the result where a is any positive element of A : We can assume without loss of generality that A is commutative so that $A=C(X)$ for some compact set X. Define $b_{n}=a e^{-n a}$ and $c_{n}=a(1+i n a)^{-1}$.

Lemma 12
Let x be an element of \mathcal{S}. Then

$$
\lim _{n}|x| e^{-n|x|}=\mathbf{0} \text { and } \lim _{n}|x|(\mathbf{1}+i n|x|)^{-1}=\mathbf{0} .
$$

Proof

- We shall prove the result where a is any positive element of A : We can assume without loss of generality that A is commutative so that $A=C(X)$ for some compact set X. Define $b_{n}=a e^{-n a}$ and $c_{n}=a(1+i n a)^{-1}$.
- Then

$$
\left\|b_{n}\right\|=\sup \left\{a(x) e^{-n a(x)}: x \in X\right\} \leq \sup \left\{t e^{-n t}: t \geq 0\right\} \leq \frac{e^{-1}}{n}
$$

Lemma 12
Let x be an element of \mathcal{S}. Then

$$
\lim _{n}|x| e^{-n|x|}=\mathbf{0} \text { and } \lim _{n}|x|(\mathbf{1}+i n|x|)^{-1}=\mathbf{0} .
$$

Proof

- We shall prove the result where a is any positive element of A :

We can assume without loss of generality that A is commutative so that $A=C(X)$ for some compact set X. Define $b_{n}=a e^{-n a}$ and $c_{n}=a(1+i n a)^{-1}$.

- Then

$$
\left\|b_{n}\right\|=\sup \left\{a(x) e^{-n a(x)}: x \in X\right\} \leq \sup \left\{t e^{-n t}: t \geq 0\right\} \leq \frac{e^{-1}}{n}
$$

- Similarly,

$$
\left\|c_{n}\right\|=\sup \left\{\frac{a(x)}{|1+\operatorname{ina}(x)|}: x \in X\right\} \leq \sup \left\{\frac{t}{|1+i n t|}: t \geq 0\right\} \leq \frac{1}{n}
$$

Lemma 12
Let x be an element of \mathcal{S}. Then

$$
\lim _{n}|x| e^{-n|x|}=\mathbf{0} \text { and } \lim _{n}|x|(\mathbf{1}+i n|x|)^{-1}=\mathbf{0} .
$$

Proof

- We shall prove the result where a is any positive element of A :

We can assume without loss of generality that A is commutative so that $A=C(X)$ for some compact set X. Define $b_{n}=a e^{-n a}$ and $c_{n}=a(1+i n a)^{-1}$.

- Then

$$
\left\|b_{n}\right\|=\sup \left\{a(x) e^{-n a(x)}: x \in X\right\} \leq \sup \left\{t e^{-n t}: t \geq 0\right\} \leq \frac{e^{-1}}{n}
$$

- Similarly,

$$
\left\|c_{n}\right\|=\sup \left\{\frac{a(x)}{|1+\operatorname{ina}(x)|}: x \in X\right\} \leq \sup \left\{\frac{t}{|1+i n t|}: t \geq 0\right\} \leq \frac{1}{n}
$$

- Since $|x|$ is positive we have the result.

Lemma 13

Let ϕ be a continuous spectrally multiplicative functional on a C^{\star}-algebra A, and suppose $x \in A$ satisfies $\psi_{\phi}(x)=0$. Then $\phi(x)=0$.

Lemma 13

Let ϕ be a continuous spectrally multiplicative functional on a C^{\star}-algebra A, and suppose $x \in A$ satisfies $\psi_{\phi}(x)=0$. Then $\phi(x)=0$.
Proof

- Write $x=u+i v$ and assume $\psi_{\phi}(x)=0$.

Lemma 13

Let ϕ be a continuous spectrally multiplicative functional on a C^{\star}-algebra A, and suppose $x \in A$ satisfies $\psi_{\phi}(x)=0$. Then $\phi(x)=0$.
Proof

- Write $x=u+i v$ and assume $\psi_{\phi}(x)=0$.
- For each $n \in \mathbb{N}$ let $W_{n}:=e^{-n \sqrt{|u|^{2}+|v|^{2}}}$ and observe that $\phi\left(W_{n}\right)=\psi_{\phi}\left(W_{n}\right)=1$.

Lemma 13

Let ϕ be a continuous spectrally multiplicative functional on a C^{\star}-algebra A, and suppose $x \in A$ satisfies $\psi_{\phi}(x)=0$. Then $\phi(x)=0$.
Proof

- Write $x=u+i v$ and assume $\psi_{\phi}(x)=0$.
- For each $n \in \mathbb{N}$ let $W_{n}:=e^{-n \sqrt{|u|^{2}+|v|^{2}}}$ and observe that $\phi\left(W_{n}\right)=\psi_{\phi}\left(W_{n}\right)=1$.
- From (P1) it follows that

$$
\begin{equation*}
\phi(x)=\phi(x) \phi\left(W_{n}\right) \in \sigma\left(x W_{n}\right)=\sigma\left(u W_{n}+i v W_{n}\right) . \tag{1}
\end{equation*}
$$

Lemma 13

Let ϕ be a continuous spectrally multiplicative functional on a C^{\star}-algebra A, and suppose $x \in A$ satisfies $\psi_{\phi}(x)=0$. Then $\phi(x)=0$.
Proof

- Write $x=u+i v$ and assume $\psi_{\phi}(x)=0$.
- For each $n \in \mathbb{N}$ let $W_{n}:=e^{-n \sqrt{|u|^{2}+|v|^{2}}}$ and observe that $\phi\left(W_{n}\right)=\psi_{\phi}\left(W_{n}\right)=1$.
- From (P1) it follows that

$$
\begin{equation*}
\phi(x)=\phi(x) \phi\left(W_{n}\right) \in \sigma\left(x W_{n}\right)=\sigma\left(u W_{n}+i v W_{n}\right) . \tag{1}
\end{equation*}
$$

- Using Lemma 12 we deduce that
$\lim _{n} \sqrt{|u|^{2}+|v|^{2}} W_{n}=\mathbf{0} \Longrightarrow \lim _{n}|u| W_{n}=\mathbf{0} \Longrightarrow \lim _{n} u W_{n}=\mathbf{0}$,
and similarly $\lim _{n} v W_{n}=\mathbf{0}$. Thus

$$
\lim _{n} x W_{n}=\lim _{n}\left(u W_{n}+i v W_{n}\right)=\mathbf{0} .
$$

and the result follows.

Lemma 14

Let ϕ be a continuous spectrally multiplicative functional on a C^{\star}-algebra $A, \alpha \in \mathbb{C}$, and suppose $x \in A$ satisfies $\psi_{\phi}(x)=0$. Then $\phi(\alpha \mathbf{1}+x)=c_{\alpha} \alpha$, for some $c_{\alpha} \in[0,1]$.

Lemma 14

Let ϕ be a continuous spectrally multiplicative functional on a C^{\star}-algebra $A, \alpha \in \mathbb{C}$, and suppose $x \in A$ satisfies $\psi_{\phi}(x)=0$. Then $\phi(\alpha \mathbf{1}+x)=c_{\alpha} \alpha$, for some $c_{\alpha} \in[0,1]$.
Proof

- With $W_{n}:=e^{-n \sqrt{|u|^{2}+|v|^{2}}}$ let $Y_{n}:=\frac{1}{\alpha} \times W_{n}$, and set $c_{\alpha}:=\frac{1}{\alpha} \phi(\alpha \mathbf{1}+x)$. From earlier we have $\lim _{n} Y_{n}=\mathbf{0}$.

Lemma 14

Let ϕ be a continuous spectrally multiplicative functional on a C^{\star}-algebra $A, \alpha \in \mathbb{C}$, and suppose $x \in A$ satisfies $\psi_{\phi}(x)=0$. Then $\phi(\alpha \mathbf{1}+x)=c_{\alpha} \alpha$, for some $c_{\alpha} \in[0,1]$.
Proof

- With $W_{n}:=e^{-n \sqrt{|u|^{2}+|v|^{2}}}$ let $Y_{n}:=\frac{1}{\alpha} \times W_{n}$, and set $c_{\alpha}:=\frac{1}{\alpha} \phi(\alpha \mathbf{1}+x)$. From earlier we have $\lim _{n} Y_{n}=\mathbf{0}$.
- Then

$$
\begin{equation*}
c_{\alpha}=\frac{1}{\alpha} \phi(\alpha \mathbf{1}+x) \phi\left(W_{n}\right) \in \sigma\left(W_{n}+Y_{n}\right) . \tag{2}
\end{equation*}
$$

Lemma 14

Let ϕ be a continuous spectrally multiplicative functional on a C^{\star}-algebra $A, \alpha \in \mathbb{C}$, and suppose $x \in A$ satisfies $\psi_{\phi}(x)=0$. Then $\phi(\alpha \mathbf{1}+x)=c_{\alpha} \alpha$, for some $c_{\alpha} \in[0,1]$.
Proof

- With $W_{n}:=e^{-n \sqrt{|u|^{2}+|v|^{2}}}$ let $Y_{n}:=\frac{1}{\alpha} \times W_{n}$, and set $c_{\alpha}:=\frac{1}{\alpha} \phi(\alpha \mathbf{1}+x)$. From earlier we have $\lim _{n} Y_{n}=\mathbf{0}$.
- Then

$$
\begin{equation*}
c_{\alpha}=\frac{1}{\alpha} \phi(\alpha \mathbf{1}+x) \phi\left(W_{n}\right) \in \sigma\left(W_{n}+Y_{n}\right) . \tag{2}
\end{equation*}
$$

- Assume, to the contrary, that $c_{\alpha} \notin[0,1]$. For each n, we have that $W_{n} \in \mathcal{S}$ and $\sigma\left(W_{n}\right) \subseteq[0,1]$. From (2) we see that $c_{\alpha} \mathbf{1}-W_{n}-Y_{n} \notin G(A)$ implying that $\mathbf{1}-Y_{n}\left(c_{\alpha} \mathbf{1}-W_{n}\right)^{-1} \notin G(A)$.
- Since $\left(c_{\alpha} \mathbf{1}-W_{n}\right)^{-1}$ is normal for each n, we have the estimation

$$
\left\|\left(c_{\alpha} \mathbf{1}-W_{n}\right)^{-1}\right\|=\rho\left(\left(c_{\alpha} \mathbf{1}-W_{n}\right)^{-1}\right) \leq \frac{1}{\operatorname{dist}\left([0,1],\left\{c_{\alpha}\right\}\right)}
$$

- Since $\left(c_{\alpha} \mathbf{1}-W_{n}\right)^{-1}$ is normal for each n, we have the estimation

$$
\left\|\left(c_{\alpha} \mathbf{1}-W_{n}\right)^{-1}\right\|=\rho\left(\left(c_{\alpha} \mathbf{1}-W_{n}\right)^{-1}\right) \leq \frac{1}{\operatorname{dist}\left([0,1],\left\{c_{\alpha}\right\}\right)}
$$

- But this means that $\lim _{n} Y_{n}\left(c_{\alpha} \mathbf{1}-W_{n}\right)^{-1}=\mathbf{0}$, hence contradicting the fact that $G(A)$ is open. Therefore $c_{\alpha} \in[0,1]$, and thus $\phi(\alpha \mathbf{1}+x)=c_{\alpha} \alpha$.

Lemma 15

Let ϕ be a continuous spectrally multiplicative functional on a C^{\star}-algebra A. If $\alpha \in \mathbb{C}$ and $x \in A$ satisfies $\psi_{\phi}(x)=0$, then $\phi(\alpha \mathbf{1}+x) \in\{0, \alpha\}$.

Lemma 15

Let ϕ be a continuous spectrally multiplicative functional on a C^{\star}-algebra A. If $\alpha \in \mathbb{C}$ and $x \in A$ satisfies $\psi_{\phi}(x)=0$, then $\phi(\alpha \mathbf{1}+x) \in\{0, \alpha\}$.

- For each $n \in \mathbb{N}$ let $V_{n}:=\left(\mathbf{1}+i n \sqrt{|u|^{2}+|v|^{2}}\right)^{-1}$. Again using Lemma 12 , we have that
$\lim _{n} \sqrt{|u|^{2}+|v|^{2}} V_{n}=\mathbf{0} \Longrightarrow \lim _{n}|u| V_{n}=\mathbf{0} \Longrightarrow \lim _{n} u V_{n}=\mathbf{0}$.

Lemma 15

Let ϕ be a continuous spectrally multiplicative functional on a C^{\star}-algebra A. If $\alpha \in \mathbb{C}$ and $x \in A$ satisfies $\psi_{\phi}(x)=0$, then $\phi(\alpha \mathbf{1}+x) \in\{0, \alpha\}$.

- For each $n \in \mathbb{N}$ let $V_{n}:=\left(1+i n \sqrt{|u|^{2}+|v|^{2}}\right)^{-1}$. Again using Lemma 12 , we have that

$$
\lim _{n} \sqrt{|u|^{2}+|v|^{2}} V_{n}=\mathbf{0} \Longrightarrow \lim _{n}|u| V_{n}=\mathbf{0} \Longrightarrow \lim _{n} u V_{n}=\mathbf{0}
$$

- Similarly $\lim _{n} v V_{n}=\mathbf{0}$. Observe that each V_{n} belongs to $G_{1}(A)$, whence it follows that $\phi\left(V_{n}\right)=\psi_{\phi}\left(V_{n}\right)=1$.

Lemma 15

Let ϕ be a continuous spectrally multiplicative functional on a C^{\star}-algebra A. If $\alpha \in \mathbb{C}$ and $x \in A$ satisfies $\psi_{\phi}(x)=0$, then $\phi(\alpha \mathbf{1}+x) \in\{0, \alpha\}$.

- For each $n \in \mathbb{N}$ let $V_{n}:=\left(1+i n \sqrt{|u|^{2}+|v|^{2}}\right)^{-1}$. Again using Lemma 12, we have that

$$
\lim _{n} \sqrt{|u|^{2}+|v|^{2}} V_{n}=\mathbf{0} \Longrightarrow \lim _{n}|u| V_{n}=\mathbf{0} \Longrightarrow \lim _{n} u V_{n}=\mathbf{0} .
$$

- Similarly $\lim _{n} v V_{n}=\mathbf{0}$. Observe that each V_{n} belongs to $G_{1}(A)$, whence it follows that $\phi\left(V_{n}\right)=\psi_{\phi}\left(V_{n}\right)=1$.
- Let $\alpha \neq 0$. From Lemma 14, we have that $\phi(\alpha \mathbf{1}+x)=c_{\alpha} \alpha$, with $c_{\alpha} \in[0,1]$. To obtain the result we have to show that $c_{\alpha} \in\{0,1\}$: For the sake of a contradiction assume that $0<c_{\alpha}<1$. If we set $Z_{n}:=\frac{1}{\alpha} \times V_{n}=\frac{1}{\alpha}(u+i v) V_{n}$, then

$$
\begin{equation*}
c_{\alpha}=\frac{1}{\alpha} \phi(\alpha \mathbf{1}+x) \phi\left(V_{n}\right) \in \sigma\left(V_{n}+Z_{n}\right) . \tag{3}
\end{equation*}
$$

- The first paragraph of the proof shows that $\lim _{n} Z_{n}=\mathbf{0}$, and (3) shows that $c_{\alpha} \mathbf{1}-V_{n}-Z_{n} \notin G(A)$.
- The first paragraph of the proof shows that $\lim _{n} Z_{n}=\mathbf{0}$, and (3) shows that $c_{\alpha} \mathbf{1}-V_{n}-Z_{n} \notin G(A)$.
- From the definition of V_{n} we have that $\sigma\left(V_{n}\right) \subseteq C_{r}$, where C_{r} is the circle in \mathbb{C} with center $\frac{1}{2}$ and radius $\frac{1}{2}$: Owing to the fact that $C_{r} \cap \mathbb{R}=\{0,1\}$, we infer that $c_{\alpha} \notin \sigma\left(V_{n}\right)$. Thus

$$
c_{\alpha} \mathbf{1}-V_{n}-Z_{n} \notin G(A) \text { and } c_{\alpha} \mathbf{1}-V_{n} \in G(A)
$$

which together implies that $\mathbf{1}-Z_{n}\left(c_{\alpha} \mathbf{1}-V_{n}\right)^{-1} \notin G(A)$.

- The first paragraph of the proof shows that $\lim _{n} Z_{n}=\mathbf{0}$, and (3) shows that $c_{\alpha} \mathbf{1}-V_{n}-Z_{n} \notin G(A)$.
- From the definition of V_{n} we have that $\sigma\left(V_{n}\right) \subseteq C_{r}$, where C_{r} is the circle in \mathbb{C} with center $\frac{1}{2}$ and radius $\frac{1}{2}$: Owing to the fact that $C_{r} \cap \mathbb{R}=\{0,1\}$, we infer that $c_{\alpha} \notin \sigma\left(V_{n}\right)$. Thus

$$
c_{\alpha} \mathbf{1}-V_{n}-Z_{n} \notin G(A) \text { and } c_{\alpha} \mathbf{1}-V_{n} \in G(A)
$$

which together implies that $\mathbf{1}-Z_{n}\left(c_{\alpha} \mathbf{1}-V_{n}\right)^{-1} \notin G(A)$.

- Since V_{n} is normal we obtain the estimate

$$
\left\|\left(c_{\alpha} \mathbf{1}-V_{n}\right)^{-1}\right\|=\rho\left(\left(c_{\alpha} \mathbf{1}-V_{n}\right)^{-1}\right) \leq \frac{1}{\operatorname{dist}\left(C_{r},\left\{c_{\alpha}\right\}\right)}
$$

from which it follows that $\lim _{n} Z_{n}\left(c_{\alpha} \mathbf{1}-V_{n}\right)^{-1}=\mathbf{0}$, contradicting the fact that $G(A)$ is open. Subsequently $c_{\alpha} \in\{0,1\}$, and $\phi(\alpha \mathbf{1}+x) \in\{0, \alpha\}$ follows as advertised.

- The first paragraph of the proof shows that $\lim _{n} Z_{n}=\mathbf{0}$, and (3) shows that $c_{\alpha} \mathbf{1}-V_{n}-Z_{n} \notin G(A)$.
- From the definition of V_{n} we have that $\sigma\left(V_{n}\right) \subseteq C_{r}$, where C_{r} is the circle in \mathbb{C} with center $\frac{1}{2}$ and radius $\frac{1}{2}$: Owing to the fact that $C_{r} \cap \mathbb{R}=\{0,1\}$, we infer that $c_{\alpha} \notin \sigma\left(V_{n}\right)$. Thus

$$
c_{\alpha} \mathbf{1}-V_{n}-Z_{n} \notin G(A) \text { and } c_{\alpha} \mathbf{1}-V_{n} \in G(A)
$$

which together implies that $\mathbf{1}-Z_{n}\left(c_{\alpha} \mathbf{1}-V_{n}\right)^{-1} \notin G(A)$.

- Since V_{n} is normal we obtain the estimate

$$
\left\|\left(c_{\alpha} \mathbf{1}-V_{n}\right)^{-1}\right\|=\rho\left(\left(c_{\alpha} \mathbf{1}-V_{n}\right)^{-1}\right) \leq \frac{1}{\operatorname{dist}\left(C_{r},\left\{c_{\alpha}\right\}\right)}
$$

from which it follows that $\lim _{n} Z_{n}\left(c_{\alpha} \mathbf{1}-V_{n}\right)^{-1}=\mathbf{0}$, contradicting the fact that $G(A)$ is open. Subsequently $c_{\alpha} \in\{0,1\}$, and $\phi(\alpha \mathbf{1}+x) \in\{0, \alpha\}$ follows as advertised.

Theorem 16 (Brits, Sebastian, Touré, 2022)
Let ϕ be a continuous spectrally multiplicative functional on a C^{\star}-algebra A. Then $\phi(x)=\psi_{\phi}(x)$ for all x in A, and hence ϕ is a character of A.

Theorem 16 (Brits, Sebastian, Touré, 2022)
Let ϕ be a continuous spectrally multiplicative functional on a C^{\star}-algebra A. Then $\phi(x)=\psi_{\phi}(x)$ for all x in A, and hence ϕ is a character of A.

- For $x \in A$ define $K_{x}:=\{\alpha \in \mathbb{C}: \phi(\alpha \mathbf{1}+x)=0\}$ and assume $\psi_{\phi}(x)=0$

Theorem 16 (Brits, Sebastian, Touré, 2022)

Let ϕ be a continuous spectrally multiplicative functional on a C^{\star}-algebra A. Then $\phi(x)=\psi_{\phi}(x)$ for all x in A, and hence ϕ is a character of A.

- For $x \in A$ define $K_{x}:=\{\alpha \in \mathbb{C}: \phi(\alpha \mathbf{1}+x)=0\}$ and assume $\psi_{\phi}(x)=0$
- Then, by observing that K_{x} is nonempty and compact, one easily proves that $K_{x}=\{0\}$

Theorem 16 (Brits, Sebastian, Touré, 2022)

Let ϕ be a continuous spectrally multiplicative functional on a C^{\star}-algebra A. Then $\phi(x)=\psi_{\phi}(x)$ for all x in A, and hence ϕ is a character of A.

- For $x \in A$ define $K_{x}:=\{\alpha \in \mathbb{C}: \phi(\alpha \mathbf{1}+x)=0\}$ and assume $\psi_{\phi}(x)=0$
- Then, by observing that K_{x} is nonempty and compact, one easily proves that $K_{x}=\{0\}$
- Invoking Lemma 15 again we then obtain $\phi(\alpha \mathbf{1}+x)=\alpha$ for each $\alpha \in \mathbb{C}$.

Theorem 16 (Brits, Sebastian, Touré, 2022)

Let ϕ be a continuous spectrally multiplicative functional on a C^{\star}-algebra A. Then $\phi(x)=\psi_{\phi}(x)$ for all x in A, and hence ϕ is a character of A.

- For $x \in A$ define $K_{x}:=\{\alpha \in \mathbb{C}: \phi(\alpha \mathbf{1}+x)=0\}$ and assume $\psi_{\phi}(x)=0$
- Then, by observing that K_{x} is nonempty and compact, one easily proves that $K_{x}=\{0\}$
- Invoking Lemma 15 again we then obtain $\phi(\alpha \mathbf{1}+x)=\alpha$ for each $\alpha \in \mathbb{C}$.
- For any value of $\psi_{\phi}(x)$ we use the first part of the proof to deduce that

$$
\phi(x)=\phi\left(\psi_{\phi}(x) \mathbf{1}+\left[x-\psi_{\phi}(x) \mathbf{1}\right]\right)=\psi_{\phi}(x)
$$

As a direct consequence of Theorem 16 one also has the following:
Theorem 17
Let ϕ be a continuous functional on a C^{\star}-algebra A satisfying $\phi(x) \phi(y) \in \sigma(x y)$ for all $x, y \in A$ Then. either ϕ is a character of A or $-\phi$ is a character of A.

