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Notation and Definitions

In general A is a complex and unital Banach algebra, with unit
denoted 1

I G (A) is the invertible group of A.

I G1(A) is the connected component of G (A) containing 1.

I σ(a) = {λ ∈ C : λ1− a is not invertible in A}.

Definition 1 (character)

If A is a Banach algebra then a linear and multiplicative functional
χ : A→ C is called a character of A.

I If χ is a character of A then for each x ∈ A, χ(x) ∈ σ(x)
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Motivation

Theorem 1 (Gleason-Kahane-Żelazko, 1967-1968)

Let A be a complex Banach algebra. Then a linear functional
φ : A→ C is a character of A if and only if φ(x) ∈ σ(x) for each
x ∈ A.

Theorem 2 (Kowalski-S lodkowski, 1980)

Let A be a complex Banach algebra. Then a functional φ : A→ C
is a character of A if and only if

φ(x) + φ(y) ∈ σ(x + y) for every x , y ∈ A

So, this beckons the question: Are there multiplicative versions of
these results? That is, if we replace “linear” by “multiplicative” in
Gleason-Kahane-Żelazko and + by × in Kowalski-S lodkowski, are
the results still valid?
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It doesn’t look promising...

I Consider the following: Let A = C2 with the usual pointwise
operations and any algebra norm. Define φ : A→ C by

φ((α, γ)) =

{
γ α 6= 0
0 α = 0.

It is easy to see that φ is not linear but that it is multiplicative
(and also homogeneous). Moreover, φ(x) ∈ σ(x) for each
x ∈ A.

I However, φ is clearly not continuous.

I It seems reasonable to add continuity to the assumptions in
the multiplicative problem.
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Further motivation comes from an old result of Carleson (of the
Corona Problem):

Theorem 3 (Carleson, 1957)

Let φ be a nonzero continuous multiplicative functional on A, and
let x ∈ A be arbitrary. Then the map

λ 7→ log |φ(x − λ1)|

is harmonic on the unbounded connected component of C \ σ(x).

So continuous multiplicative functionals do exhibit some good
behaviour...



Earlier results

Theorem 4 (Maouche, 1996)

Let A be a Banach algebra, and let φ : A→ C be a multiplicative
function satisfying φ(x) ∈ σ(x) for each x ∈ A. Then,
corresponding to φ, there exists a unique character on A which
agrees with φ on G1(A).

Theorem 5 (Brits, Schulz, Touré, 2017)

Let A be a Banach algebra, and let φ be a multiplicative functional
on A satisfying φ(x) ∈ σ(x) for each x ∈ A. Then the following are
equivalent:

I φ is a character of A.

I For each x ∈ A the map λ 7→ φ(λ1− x) is an entire function
on C.

I For each x ∈ A the map λ 7→ |φ(x − λ1) + λ| is subharmonic
on C.
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Theorem 6 (Brits, Schulz, Touré, 2017)

Let A be a von Neumann algebra and let φ : A→ C be a
multiplicative functional. Then φ is a character of A if and only if
φ is continuous and φ(x) ∈ σ(x) for each x ∈ A.

Theorem 7 (Brits, Mabrouk, Touré, 2021 )

Let A be any C ?-algebra and let φ : A→ C be a multiplicative
functional. Then φ is a character of A if and only if φ is
continuous and φ(x) ∈ σ(x) for each x ∈ A.

Theorem 8 (Brits, Schulz, Touré, 2018)

Let A be a Banach algebra such that σ(x) is totally disconnected
for each x ∈ A. If a functional φ on A is continuous and satisfies
φ(x)φ(y) ∈ σ(xy) for all x , y ∈ A, then either φ or −φ is a
character of A. In particular if A is a scattered Banach algebra
then φ or −φ is a character of A
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Spectrally Multiplicative Functionals on C ?-Algebras

Throughout this section A is a unital C ?-algebra. We denote by S
the collection of all self-adjoint elements of A. We shall consider a
function φ : A→ C satisfying the following conditions:

(P1) φ(x)φ(y) ∈ σ(xy) for all x , y ∈ A,

(P2) φ(1) = 1,

(P3) φ is continuous on A.

and refer to a functional satisfying (P1)-(P2) as a spectrally
multiplicative functional.



Lemma 9
Let x ∈ S. If φ(x) 6= 0, then:

(i) φ(1 + ix) = 1 + iφ(x),

(ii) φ(tx) = tφ(x), for each t ∈ R,
(iii) φ(etx) = eφ(tx) = etφ(x), for each t ∈ R,
(iv) φ(xn) = φ(x)n, for each n ∈ N.

Proof (iii)

I By (ii) it suffices to show that φ(ex) = eφ(x).

I Consider
φ(ex)φ(1 + ix) ∈ σ(ex + ixex).

I Then, using (i),

φ(ex) + iφ(ex)φ(x) = eγ + eγγi

for some γ ∈ σ(x).

I Consequently φ(ex) = eγ and φ(x) = γ and so φ(ex) = eφ(x).
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Lemma 10
φ has the following properties:

(i) If x ∈ S, then φ
(
eλx
)

= eλφ(x) holds for all λ ∈ C.

(ii) If x , x1, . . . , xn ∈ S, and λ ∈ C, then

φ
(
eλxex1 · · · exn

)
= φ

(
eλx
)
φ (ex1) · · ·φ (exn) .

(iii) If x , y ∈ S, then φ(x + y) = φ(x) + φ(y).

Proof (iii)
I If n ∈ N then, from (i) and (ii), it follows that

φ
([

ex/ney/n
]n)

= eφ(x)+φ(y).

I But, by continuity and the Lie-Trotter formula, we have

lim
n
φ
([

ex/ney/n
]n)

= φ
(

lim
n

[
ex/ney/n

]n)
= φ

(
ex+y

)
= eφ(x+y).

I Since φ takes real values on S we have the result.
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Theorem 11 (Brits, Schulz, Touré, 2018)

The formula
ψφ(x) := φ (Re(x)) + iφ (Im(x))

defines a character on A, moreover, ψφ agrees with φ on G1(A)∪S

Proof
I By Lemma 10 (iii), together with Kowalski-S lodkowski, ψφ

would be a character if we can prove that ψφ(x) ∈ σ(x) for
each x ∈ A.

I Write x = u + i v where u := Re(x) and v := Im(x). By the
hypothesis on φ it follows that[

φ
(
etu
)
φ
(
e itv
)
− 1
]
/t ∈ σ

([
etue itv − 1

]
/t
)
.

I Hence, by Lemma 10(i), we have that[
etφ(u)e itφ(v) − 1

]
/t ∈ σ

([
etue itv − 1

]
/t
)
.

I If we let t → 0, then, using the fact that A \ G (A) is closed in
A, it follows that ψφ(x) = φ(u) + iφ(v) ∈ σ(u + i v).
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Lemma 12
Let x be an element of S. Then

lim
n
|x |e−n|x | = 0 and lim

n
|x | (1 + in|x |)−1 = 0.

Proof
I We shall prove the result where a is any positive element of A:

We can assume without loss of generality that A is
commutative so that A = C (X ) for some compact set X .
Define bn = ae−na and cn = a (1 + ina)−1.

I Then
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Lemma 13
Let φ be a continuous spectrally multiplicative functional on a
C ?-algebra A, and suppose x ∈ A satisfies ψφ(x) = 0. Then
φ(x) = 0.

Proof
I Write x = u + iv and assume ψφ(x) = 0.

I For each n ∈ N let Wn := e−n
√
|u|2+|v |2 and observe that

φ (Wn) = ψφ (Wn) = 1.
I From (P1) it follows that

φ(x) = φ(x)φ (Wn) ∈ σ (xWn) = σ (uWn + ivWn) . (1)

I Using Lemma 12 we deduce that

lim
n

√
|u|2 + |v |2Wn = 0 =⇒ lim

n
|u|Wn = 0 =⇒ lim

n
uWn = 0,

and similarly limn vWn = 0. Thus

lim
n

xWn = lim
n

(uWn + ivWn) = 0.

and the result follows.
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Lemma 14
Let φ be a continuous spectrally multiplicative functional on a
C ?-algebra A, α ∈ C, and suppose x ∈ A satisfies ψφ(x) = 0.
Then φ(α1 + x) = cαα, for some cα ∈ [0, 1].

Proof

I With Wn := e−n
√
|u|2+|v |2 let Yn := 1

αxWn, and set
cα := 1

αφ(α1 + x). From earlier we have limn Yn = 0.

I Then

cα =
1

α
φ(α1 + x)φ (Wn) ∈ σ (Wn + Yn) . (2)

I Assume, to the contrary, that cα /∈ [0, 1]. For each n, we have
that Wn ∈ S and σ(Wn) ⊆ [0, 1]. From (2) we see that

cα1−Wn−Yn /∈ G (A) implying that 1−Yn(cα1−Wn)−1 /∈ G (A).
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I Since (cα1−Wn)−1 is normal for each n, we have the
estimation∥∥∥(cα1−Wn)−1

∥∥∥ = ρ
(
(cα1−Wn)−1

)
≤ 1

dist
(
[0, 1], {cα}

)

I But this means that limn Yn(cα1−Wn)−1 = 0, hence
contradicting the fact that G (A) is open. Therefore
cα ∈ [0, 1], and thus φ(α1 + x) = cαα.
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Lemma 15
Let φ be a continuous spectrally multiplicative functional on a
C ?-algebra A. If α ∈ C and x ∈ A satisfies ψφ(x) = 0, then
φ(α1 + x) ∈ {0, α}.

I For each n ∈ N let Vn :=
(
1 + in

√
|u|2 + |v |2

)−1
. Again

using Lemma 12, we have that

lim
n

√
|u|2 + |v |2 Vn = 0 =⇒ lim

n
|u|Vn = 0 =⇒ lim

n
uVn = 0.

I Similarly limn vVn = 0. Observe that each Vn belongs to
G1(A), whence it follows that φ(Vn) = ψφ(Vn) = 1.

I Let α 6= 0. From Lemma 14, we have that φ(α1 + x) = cαα,
with cα ∈ [0, 1]. To obtain the result we have to show that
cα ∈ {0, 1}: For the sake of a contradiction assume that
0 < cα < 1. If we set Zn := 1

αxVn = 1
α(u + iv)Vn, then

cα =
1

α
φ(α1 + x)φ(Vn) ∈ σ (Vn + Zn) . (3)
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I The first paragraph of the proof shows that limn Zn = 0, and
(3) shows that cα1− Vn − Zn /∈ G (A).

I From the definition of Vn we have that σ (Vn) ⊆ Cr , where Cr

is the circle in C with center 1
2 and radius 1

2 : Owing to the
fact that Cr ∩ R = {0, 1}, we infer that cα /∈ σ (Vn). Thus

cα1− Vn − Zn /∈ G (A) and cα1− Vn ∈ G (A),

which together implies that 1− Zn (cα1− Vn)−1 /∈ G (A).

I Since Vn is normal we obtain the estimate∥∥∥(cα1− Vn)−1
∥∥∥ = ρ

(
(cα1− Vn)−1

)
≤ 1

dist(Cr , {cα})

from which it follows that limn Zn (cα1− Vn)−1 = 0,
contradicting the fact that G (A) is open. Subsequently
cα ∈ {0, 1}, and φ(α1 + x) ∈ {0, α} follows as advertised.
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Theorem 16 (Brits, Sebastian, Touré, 2022)

Let φ be a continuous spectrally multiplicative functional on a
C ?-algebra A. Then φ(x) = ψφ(x) for all x in A, and hence φ is a
character of A.

I For x ∈ A define Kx := {α ∈ C : φ(α1 + x) = 0} and assume
ψφ(x) = 0

I Then, by observing that Kx is nonempty and compact, one
easily proves that Kx = {0}

I Invoking Lemma 15 again we then obtain φ(α1 + x) = α for
each α ∈ C.

I For any value of ψφ(x) we use the first part of the proof to
deduce that

φ(x) = φ (ψφ(x)1 + [x − ψφ(x)1]) = ψφ(x).
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As a direct consequence of Theorem 16 one also has the following:

Theorem 17
Let φ be a continuous functional on a C ?-algebra A satisfying
φ(x)φ(y) ∈ σ(xy) for all x , y ∈ A Then. either φ is a character of
A or −φ is a character of A.


